scholarly journals How wind speed shear and directional veer affect the power production of a megawatt-scale operational wind turbine

2020 ◽  
Vol 5 (3) ◽  
pp. 1169-1190
Author(s):  
Patrick Murphy ◽  
Julie K. Lundquist ◽  
Paul Fleming

Abstract. Most megawatt-scale wind turbines align themselves into the wind as defined by the wind speed at or near the center of the rotor (hub height). However, both wind speed and wind direction can change with height across the area swept by the turbine blades. A turbine aligned to hub-height winds might experience suboptimal or superoptimal power production, depending on the changes in the vertical profile of wind, also known as shear. Using observed winds and power production over 6 months at a site in the high plains of North America, we quantify the sensitivity of a wind turbine's power production to wind speed shear and directional veer as well as atmospheric stability. We measure shear using metrics such as α (the log-law wind shear exponent), βbulk (a measure of bulk rotor-disk-layer veer), βtotal (a measure of total rotor-disk-layer veer), and rotor-equivalent wind speed (REWS; a measure of actual momentum encountered by the turbine by accounting for shear). We also consider the REWS with the inclusion of directional veer, REWSθ, although statistically significant differences in power production do not occur between REWS and REWSθ at our site. When REWS differs from the hub-height wind speed (as measured by either the lidar or a transfer function-corrected nacelle anemometer), the turbine power generation also differs from the mean power curve in a statistically significant way. This change in power can be more than 70 kW or up to 5 % of the rated power for a single 1.5 MW utility-scale turbine. Over a theoretical 100-turbine wind farm, these changes could lead to instantaneous power prediction gains or losses equivalent to the addition or loss of multiple utility-scale turbines. At this site, REWS is the most useful metric for segregating the turbine's power curve into high and low cases of power production when compared to the other shear or stability metrics. Therefore, REWS enables improved forecasts of power production.

2019 ◽  
Author(s):  
Patrick Murphy ◽  
Julie K. Lundquist ◽  
Paul Fleming

Abstract. Most megawatt-scale wind turbines align themselves into the wind as defined by the wind speed at or near the center of the rotor (hub height). However, both wind speed and wind direction can change with height across the area swept by the turbine blades. A turbine aligned to hub-height winds might experience suboptimal or superoptimal power production, depending on the changes in the vertical profile of wind, or shear. Using observed winds and power production over 6 months at a site in the high plains of North America, we quantify the sensitivity of a wind turbine's power production to wind speed shear and directional veer as well as atmospheric stability. We measure shear using metrics such as α (the log-law wind shear exponent), βbulk (a measure of bulk rotor-disk-layer veer), βtotal (a measure of total rotor-disk-layer veer) and rotor-equivalent wind speed (REWS), a measure of actual momentum encountered by the turbine by accounting for shear). We also consider the REWS with the inclusion of directional veer, REWSθ, although statistically significant differences in power production do not occur between REWS and REWSθ at our site. When REWS differs from the hub-height wind speed (as measured either by the lidar or a transfer function-corrected nacelle anemometer), the turbine power generation also differs from the mean power curve in a statistically significant way. This change in power can be more than 70 kW, or up to 5 % of the rated power for a single 1.5-MW utility-scale turbine. Over a theoretical 100-turbine wind farm, these changes could lead to instantaneous power prediction gains or losses equivalent to the addition or loss of multiple utility-scale turbines. At this site, REWS is the most useful metric for segregating the turbine's power curve into high and low cases of power production when compared to the other shear or stability metrics. Therefore, REWS enables improved forecasts of power production.


2017 ◽  
Author(s):  
Joseph C. Y. Lee ◽  
Julie K. Lundquist

Abstract. Forecasts of wind power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate that a vertical grid with nominally 12-m vertical resolution is necessary for reproducing the observed power production, with statistical significance. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed and low turbulence conditions. We also find the WFP performance is independent of atmospheric stability, the number of wind turbines per model grid cell, and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


2020 ◽  
pp. 0309524X2092540
Author(s):  
Addisu Dagne Zegeye

Although Ethiopia does not have significant fossil fuel resource, it is endowed with a huge amount of renewable energy resources such as hydro, wind, geothermal, and solar power. However, only a small portion of these resources has been utilized so far and less than 30% of the nation’s population has access to electricity. The wind energy potential of the country is estimated to be up to 10 GW. Yet less than 5% of this potential is developed so far. One of the reasons for this low utilization of wind energy in Ethiopia is the absence of a reliable and accurate wind atlas and resource maps. Development of reliable and accurate wind atlas and resource maps helps to identify candidate sites for wind energy applications and facilitates the planning and implementation of wind energy projects. The main purpose of this research is to assess the wind energy potential and model wind farm in the Mossobo-Harena site of North Ethiopia. In this research, wind data collected for 2 years from Mossobo-Harena site meteorological station were analyzed using different statistical software to evaluate the wind energy potential of the area. Average wind speed and power density, distribution of the wind, prevailing direction, turbulence intensity, and wind shear profile of the site were determined. Wind Atlas Analysis and Application Program was used to generate the generalized wind climate of the area and develop resource maps. Wind farm layout and preliminary turbine micro-sitting were done by taking various factors into consideration. The IEC wind turbine class of the site was determined and an appropriate wind turbine for the study area wind climate was selected and the net annual energy production and capacity factor of the wind farm were determined. The measured data analysis conducted indicates that the mean wind speed at 10 and 40 m above the ground level is 5.12 and 6.41 m/s, respectively, at measuring site. The measuring site’s mean power density was determined to be 138.55 and 276.52 W/m2 at 10 and 40 m above the ground level, respectively. The prevailing wind direction in the site is from east to south east where about 60% of the wind was recorded. The resource grid maps developed by Wind Atlas Analysis and Application Program on a 10 km × 10 km area at 50 m above the ground level indicate that the selected study area has a mean wind speed of 5.58 m/s and a mean power density of 146 W/m2. The average turbulence intensity of the site was found to be 0.136 at 40 m which indicates that the site has a moderate turbulence level. According to the resource assessment done, the area is classified as a wind Class IIIB site. A 2-MW rated power ENERCON E-82 E2 wind turbine which is an IEC Class IIB turbine with 82 m rotor diameter and 98 m hub height was selected for estimation of annual energy production on the proposed wind farm. 88 ENERCON E-82 E2 wind turbines were properly sited in the wind farm with recommended spacing between the turbines so as to reduce the wake loss. The rated power of the wind farm is 180.4 MW and the net annual energy production and capacity factor of the proposed wind farm were determined to be 434.315 GWh and 27.48% after considering various losses in the wind farm.


2013 ◽  
Vol 336-338 ◽  
pp. 1114-1117 ◽  
Author(s):  
Ying Zhi Liu ◽  
Wen Xia Liu

This paper elaborates the effect of wind speed on the output power of the wind farms at different locations. It also describes the correction of the power curve and shows the comparison chart of the standard power curve and the power curve after correction. In China's inland areas, wind farms altitude are generally higher, the air density is much different from the standard air density. The effect of air density on wind power output must be considered during the wind farm design.


2006 ◽  
Vol 128 (4) ◽  
pp. 531-538 ◽  
Author(s):  
Jonathon Sumner ◽  
Christian Masson

The impact of atmospheric stability on vertical wind profiles is reviewed and the implications for power performance testing and site evaluation are investigated. Velocity, temperature, and turbulence intensity profiles are generated using the model presented by Sumner and Masson. This technique couples Monin-Obukhov similarity theory with an algebraic turbulence equation derived from the k-ϵ turbulence model to resolve atmospheric parameters u*, L, T*, and z0. The resulting system of nonlinear equations is solved with a Newton-Raphson algorithm. The disk-averaged wind speed u¯disk is then evaluated by numerically integrating the resulting velocity profile over the swept area of the rotor. Power performance and annual energy production (AEP) calculations for a Vestas Windane-34 turbine from a wind farm in Delabole, England, are carried out using both disk-averaged and hub height wind speeds. Although the power curves generated with each wind speed definition show only slight differences, there is an appreciable impact on the measured maximum turbine efficiency. Furthermore, when the Weibull parameters for the site are recalculated using u¯disk, the AEP prediction using the modified parameters falls by nearly 5% compared to current methods. The IEC assumption that the hub height wind speed can be considered representative tends to underestimate maximum turbine efficiency. When this assumption is further applied to energy predictions, it appears that the tendency is to overestimate the site potential.


Author(s):  
Andrew Hays ◽  
Kenneth Van Treuren

Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines in the urban environment. A major design challenge for these urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the Blade-Element Momentum Theory and either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a 1/4” microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each horizontal location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).


2021 ◽  
Vol 6 (6) ◽  
pp. 1427-1453
Author(s):  
Eric Simley ◽  
Paul Fleming ◽  
Nicolas Girard ◽  
Lucas Alloin ◽  
Emma Godefroy ◽  
...  

Abstract. Wake steering is a wind farm control strategy in which upstream wind turbines are misaligned with the wind to redirect their wakes away from downstream turbines, thereby increasing the net wind plant power production and reducing fatigue loads generated by wake turbulence. In this paper, we present results from a wake-steering experiment at a commercial wind plant involving two wind turbines spaced 3.7 rotor diameters apart. During the 3-month experiment period, we estimate that wake steering reduced wake losses by 5.6 % for the wind direction sector investigated. After applying a long-term correction based on the site wind rose, the reduction in wake losses increases to 9.3 %. As a function of wind speed, we find large energy improvements near cut-in wind speed, where wake steering can prevent the downstream wind turbine from shutting down. Yet for wind speeds between 6–8 m/s, we observe little change in performance with wake steering. However, wake steering was found to improve energy production significantly for below-rated wind speeds from 8–12 m/s. By measuring the relationship between yaw misalignment and power production using a nacelle lidar, we attribute much of the improvement in wake-steering performance at higher wind speeds to a significant reduction in the power loss of the upstream turbine as wind speed increases. Additionally, we find higher wind direction variability at lower wind speeds, which contributes to poor performance in the 6–8 m/s wind speed bin because of slow yaw controller dynamics. Further, we compare the measured performance of wake steering to predictions using the FLORIS (FLOw Redirection and Induction in Steady State) wind farm control tool coupled with a wind direction variability model. Although the achieved yaw offsets at the upstream wind turbine fall short of the intended yaw offsets, we find that they are predicted well by the wind direction variability model. When incorporating the expected yaw offsets, estimates of the energy improvement from wake steering using FLORIS closely match the experimental results.


Sign in / Sign up

Export Citation Format

Share Document