Simulation and Research of Induction Motor Considering Iron Loss in Stationary Reference Frame

Author(s):  
Yin Jun ◽  
Lu Xiaoli ◽  
Wei Yunbing ◽  
Cui Guangzhao
2010 ◽  
Vol 2 (1) ◽  
pp. 85-89
Author(s):  
Sigitas Juraitis

The computer model of electromechanical system with elasticity and clearance is elaborated. Model of induction motor is developed in stationary reference frame. Results of simulation are presented and discussed. Conclusions about influence of finite stiffness and clearance on the system dynamics are made.


2014 ◽  
Vol 984-985 ◽  
pp. 970-976
Author(s):  
Memala W. Abitha ◽  
V. Rajini

The three phase induction motor is a popularly used machine in many of the industries, which is well known for its robustness, reliability, cost effectiveness, efficient and safe operation. The unnoticed manufacturing failure, mistakes during repair work, exceeding life time may be some of the causes of the induction motor failure, which may lead to the unknown shut down time of the industry. The condition monitoring plays important role as it has the influence on the production of materials and profit. In our work, the induction motor is modelled using stationary reference frame and analysed for single phasing stator fault. The techniques used in detecting the single phasing (open circuit) failures are Park’s vector approach and Fast Fourier Transform (FFT). Park’s vector approach is used for detecting the faults occurring at various phases and FFT is used for detecting the faults of the induction motor working under no load and varying loading conditions.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4160
Author(s):  
Waqar Uddin ◽  
Tiago D. C. Busarello ◽  
Kamran Zeb ◽  
Muhammad Adil Khan ◽  
Anil Kumar Yedluri ◽  
...  

This paper proposed a control method for output and circulating currents of modular multilevel converter (MMC). The output and circulating current are controlled with the help of arm currents, which contain DC, fundamental frequency, and double frequency components. The arm current is transformed into a stationary reference frame (SRF) to isolate the DC and AC components. The AC component is controlled with a conventional proportional resonant (PR) controller, while the DC component is controlled by a proportional controller. The effective control of the upper arm and lower arm ultimately controls the output current so that it delivers the required power to the grid and circulating current in such a way that the second harmonic component is completely vanished leaving behind only the DC component. Comparative results of leg-level control based on PR controller are included in the paper to show the effectiveness of the proposed control scheme. A three-phase, five-level MMC is developed in MATLAB/Simulink to verify the effectiveness of the proposed control method.


2000 ◽  
Vol 120 (11) ◽  
pp. 1305-1312 ◽  
Author(s):  
Masaru Hasegawa ◽  
Hisanori Yamasaki ◽  
Shinji Doki ◽  
Shigeru Okuma

Sign in / Sign up

Export Citation Format

Share Document