2021 ◽  
pp. 1-14
Author(s):  
Shuang Wang ◽  
Lei Ding ◽  
He Sui ◽  
Zhaojun Gu

Cybersecurity risk assessment is an important means of effective response to network attacks on industrial control systems. However, cybersecurity risk assessment process is susceptible to subjective and objective effects. To solve this problem, this paper introduced cybersecurity risk assessment method based on fuzzy theory of Attack-Defense Tree model and probability cybersecurity risk assessment technology, and applied it to airport automatic fuel supply control system. Firstly, an Attack-Defense Tree model was established based on the potential cybersecurity threat of the system and deployed security equipment. Secondly, the interval probability of the attack path was calculated using the triangular fuzzy quantification of the interval probabilities of the attack leaf nodes and defensive leaf nodes. Next, the interval probability of the final path was defuzzified. Finally, the occurrence probability of each final attack path was obtained and a reference for the deployment of security equipment was provided. The main contributions of this paper are as follows: (1) considering the distribution of equipment in industrial control system, a new cybersecurity risk evaluation model of industrial control system is proposed. (2) The experimental results of this article are compared with other assessment technologies, and the trend is similar to that of other evaluation methods, which proves that the method was introduced in this paper is scientific. However, this method reduces the subjective impact of experts on cybersecurity risk assessment, and the assessment results are more objective and reasonable. (3) Applying this model to the airport oil supply automatic control system can comprehensively evaluate risk, solve the practical problems faced by the airport, and also provide an important basis for the cybersecurity protection scheme of the energy industry.


2019 ◽  
Vol 14 (3) ◽  
pp. 419-436 ◽  
Author(s):  
Yuhe Wang ◽  
Peili Qiao ◽  
Zhiyong Luo ◽  
Guanglu Sun ◽  
Guangze Wang

This paper establishes a novel reliability assessment method for industrial control system (ICS). Firstly, the qualitative and quantitative information were integrated by evidential reasoning(ER) rule. Then, an ICS reliability assessment model was constructed based on belief rule base (BRB). In this way, both expert experience and historical data were fully utilized in the assessment. The model consists of two parts, a fault assessment model and a security assessment model. In addition, the initial parameters were optimized by covariance matrix adaptation evolution strategy (CMA-ES) algorithm, making the proposed model in line with the actual situation. Finally, the proposed model was compared with two other popular prediction methods through case study. The results show that the proposed method is reliable, efficient and accurate, laying a solid basis for reliability assessment of complex ICSs.


Sign in / Sign up

Export Citation Format

Share Document