Fault tolerant strategy for hybrid longitudinal control system of automated vehicles

Author(s):  
Hao Yang ◽  
Vincent Cocquempot ◽  
Bin Jiang
1998 ◽  
Vol 122 (3) ◽  
pp. 470-476 ◽  
Author(s):  
R. Rajamani ◽  
S. B. Choi ◽  
B. K. Law ◽  
J. K. Hedrick ◽  
R. Prohaska ◽  
...  

This paper presents the design and experimental implementation of a longitudinal control system for the operation of automated vehicles in platoons. The control system on each vehicle is designed to have a hierarchical structure and consists of an upper level controller and a lower level controller. The upper controller determines the desired acceleration for each vehicle in the platoon so as to maintain safe string-stable operation even at very small intervehicle spacing. The lower controller utilizes vehicle-specific parameters and determines the throttle and/or brake commands required to track the desired acceleration. A special challenge handled in the design of the lower level controller is low-speed operation that involves gear changes and torque converter dynamics. The paper also presents the design of longitudinal intra-platoon maneuvers that are required in order to allow any car in the platoon to make an exit. The paper presents extensive experimental results from the public NAHSC demonstration of automated highways conducted in August 1997 at San Diego, California. The demonstration included an eight-car platoon operating continuously over several weeks with passenger rides given to over a thousand visitors. The maneuvers demonstrated included starting the automated vehicles from complete rest, accelerating to cruising speed, allowing any vehicle to exit from the platoon, allowing new vehicles to join the platoon and bringing the platoon to a complete stop at the end of the highway. [S0022-0434(00)01903-1]


Author(s):  
K Yi ◽  
N Ryu ◽  
H J Yoon ◽  
K Huh ◽  
D Cho ◽  
...  

Implementation and vehicle tests of a vehicle longitudinal control algorithm for stop-and-go cruise control have been performed. The vehicle longitudinal control scheme consists of a set-speed control algorithm, a speed control algorithm, and a distance control algorithm. A desired acceleration for the vehicle for the control of vehicle-to-vehicle relative speed and clearance has been designed using linear quadratic optimal control theory. Performance of the control algorithm has been investigated via vehicle tests. Vehicle tests have been conducted using two test vehicles. A 2000 cm3 passenger car equipped with a radar distance sensor, throttle/brake actuators and a controller has been used as a subject vehicle in the vehicle tests. A millimetre wave radar sensor has been used for distance measurement. A step motor and an electronic vacuum booster have been used for throttle/brake actuators. It has been shown that the implemented vehicle longitudinal control system can provide satisfactory performance in vehicle set-speed control and vehicle clearance control at lower speeds.


2011 ◽  
Vol 34 (7) ◽  
pp. 521-527 ◽  
Author(s):  
T. Accadia ◽  
F. Acernese ◽  
F. Antonucci ◽  
P. Astone ◽  
G. Ballardin ◽  
...  

2000 ◽  
Vol 33 (26) ◽  
pp. 831-836 ◽  
Author(s):  
Shashikanth Suryanarayanan ◽  
Masayoshi Tomizuka ◽  
Tatsuya Suzuki

Sign in / Sign up

Export Citation Format

Share Document