Analytical approximation method for the center manifold in the nonlinear output regulation problem

Author(s):  
Hidetoshi Suzuki ◽  
Noboru Sakamoto ◽  
Sergej Celikovsky
Author(s):  
Luis A. Poblete ◽  
Tonatiuh Hernández-Cortés ◽  
Víctor Estrada-Manzo

This paper is devoted to provide a numerical solution the nonlinear output regulation problem for descriptor systems. The control law under design is a nonlinear one, it consists on a nonlinear stabilizer combined with linear steady-state mapping as well as nonlinear steady-state input mapping; all of them are computed via linear matrix inequalities. A numerical example as well as a mechanical system as well are used to illustrate the viability of the proposed approach.


Author(s):  
Yaoli Zhang ◽  
Jun Zhao

This paper investigates the output regulation problem for switched discrete-time systems with output quantization. We adopt the quantized output in feedback controllers and allow each subsystem to have its own quantization density, so that the communication network can be efficiently utilized. By using the different coordinates transformation, the solvability of the output regulation problem is guaranteed under deigned output feedback controllers with the switching signals satisfying a dwell time constraint. In the simulation, a pulse-width modulation driven boost converter model is employed to validate the result.


2016 ◽  
Vol 40 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Meichen Guo ◽  
Lu Liu

This paper discusses the global robust output regulation problem for a class of nonlinear output feedback systems. It is assumed that the exosystem and the high-frequency gain sign are unknown and that the unknown parameters can be arbitrarily large. To solve this problem, two major challenges are to be overcome. First, the concurrence of the unknown exosystem and the unknown high-frequency gain sign cannot be handled merely by designing estimators for the two unknown parameters respectively. Second, the conventional extended matching design approach cannot be directly implemented, owing to the arbitrarily large unknown parameters. To cope with these difficulties, a new estimator is developed, and the extended matching design approach is modified to obtain a suitable update law for the estimator. The effectiveness of the proposed adaptive controller is illustrated by an example.


Sign in / Sign up

Export Citation Format

Share Document