Control of nonlinear systems with full state constraint using a Barrier Lyapunov Function

Author(s):  
Keng Peng Tee ◽  
Shuzhi Sam Ge
Author(s):  
Fei Shen ◽  
Xinjun Wang ◽  
Xinghui Yin

This paper investigates the problem of adaptive control based on Barrier Lyapunov function for a class of full-state constrained stochastic nonlinear systems with dead-zone and unmodeled dynamics. To stabilize such a system, a dynamic signal is introduced to dominate unmodeled dynamics and an assistant signal is constructed to compensate for the effect of the dead zone. Dynamic surface control is used to solve the “complexity explosion” problem in traditional backstepping design. Two cases of symmetric and asymmetric Barrier Lyapunov functions are discussed respectively in this paper. The proposed Barrier Lyapunov function based on backstepping method can ensure that the output tracking error converges in the small neighborhood of the origin. This control scheme can ensure that semi-globally uniformly ultimately boundedness of all signals in the closed-loop system. Two simulation cases are proposed to verify the effectiveness of the theoretical method.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Enchang Cui ◽  
Yuanwei Jing ◽  
Xiaoting Gao

This paper discusses partial state constraint adaptive tracking control problem of switched nonlinear systems with uncertain parameters. In order to ensure boundedness of the outputs and prevent the states from violating the constraints, a barrier Lyapunov function (BLF) is employed. Based on backstepping method, an adaptive controller for the switched system is designed. Furthermore, the state-constrained asymptotic tracking under arbitrary switching is performed. The closed-loop signals keep bounded when the initial states and control parameters are given. Finally, examples and simulation results are reported to illustrate the effectiveness of the proposed controller.


Author(s):  
Ben Niu ◽  
Georgi M. Dimirovski ◽  
Jun Zhao

In this paper, we address the tracking control problem for switched nonlinear systems in strict-feedback form with time-varying output constraints. To prevent the output from violating the time-varying constraints, we employ a Barrier Lyapunov Function, which relies explicitly on time. Based on the simultaneous domination assumption, we design a controller for the switched system, which guarantees that asymptotic tracking is achieved without transgression of the constraints and all closed-loop signals remain bounded under arbitrary switchings. The effectiveness of the proposed results is illustrated using a numerical example.


Sign in / Sign up

Export Citation Format

Share Document