Consensus of networked mechanical systems with time delays: A unified framework

Author(s):  
Hanlei Wang
Author(s):  
Tzu Sung Wu ◽  
Mansour Karkoub

Complex mechanical systems, such as tower cranes, are known to be highly nonlinear, under-actuated, and non-colocated, which makes their closed-loop control very challenging. The interconnected components of these systems undergo complex dynamic phenomena, such as friction, which lead to energy or momentum transmission delays. The complexity of such systems is further complicated by external disturbances and nonlinearities resulting from using hydraulic and/or electrical actuators, mechanical joints, gears, etc., which result in the formation of dead-zones, backlash, and hysteresis. A dead-zone, which constitutes a significant non-smooth nonlinearity, severely limits the performance of many mechanical systems such as the tower crane. Previous works on the control of tower cranes were based on accurate determination of their actuated states. In this work, a robust control technique based on adaptive fuzzy theory is investigated for anti-swing and trajectory tracking of tower crane systems. The system is subject to uncertainties in parameter parameters, time delays, external disturbances, and unknown actuator nonlinearities. The unknown actuator nonlinearities, from the jib and tower motors, are characterized by dead-zone bands (as opposed to the typical crisp dead-zone functions). First, fuzzy logic systems with on-line adaptations are utilized to evaluate the unknown nonlinear functions. The proposed control scheme uses the H∞ control technique to develop compensators to overcome the effects of parameter variations, time delays, external disturbances, and unknown actuator dead-zone band nonlinearities. The proposed control scheme ensures the stability of the closed-loop system and achieves desired tracking precision such that the states of the tower crane system are ultimately uniformly bounded (UUB) and guarantees an H∞ norm bound constraint on disturbance attenuation for all admissible uncertainties based on the Lyapunov criterion. Simulation results show the validity of this approach for the tower crane system.


Author(s):  
Yen-Chen Liu ◽  
Nikhil Chopra

The problem of controlling a group of networked mechanical systems to synchronize and follow a common trajectory is studied in this paper. We first address the results for networked mechanical systems to achieve synchronization when the interagent communication graph is balanced and strongly connected with communication delays. Subsequently, a control law is developed to guarantee synchronization and trajectory tracking for networked mechanical systems communicating on regular graphs when there are constant time delays in communication and the interconnection topology is time-varying. The case when a human operator input is introduced in the closed-loop system is also considered. It is demonstrated that a bounded human operator input results in bounded tracking and synchronization errors, even when there are constant time delays in communication. The simulation and experimental results are presented by utilizing the kinematic and dynamic models of PHANToM Omni derived in this paper.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1413
Author(s):  
José F. Cariñena ◽  
José Fernández-Núñez

We review the general theory of the Jacobi last multipliers in geometric terms and then apply the theory to different problems in integrability and the inverse problem for one-dimensional mechanical systems. Within this unified framework, we derive the explicit form of a Lagrangian obtained by several authors for a given dynamical system in terms of known constants of the motion via a Jacobi multiplier for both autonomous and nonautonomous systems, and some examples are used to illustrate the general theory. Finally, some geometric results on Jacobi multipliers and their use in the study of Hojman symmetry are given.


Author(s):  
Nikhil Chopra ◽  
YenChen Liu

In this paper we study the problem of synchronization and trajectory tracking in mechanical systems. Exploiting output synchronization results developed previously, a control algorithm is developed to guarantee output synchronization in addition to trajectory tracking in mechanical systems. The classical Slotine-Li adaptive trajectory tracking algorithm is modified to synchronize mechanical systems following a common trajectory. The robustness of the proposed scheme to time delays in communication is also discussed. A numerical example is presented to verify the efficacy of the proposed results.


2002 ◽  
Vol 30 (6) ◽  
pp. 339-351
Author(s):  
M. S. Fofana

The aim of this paper is to establish a connecting thread through the probabilistic concepts ofpth-moment Lyapunov exponents, the integral averaging method, and Hale's reduction approach for delay dynamical systems. We demonstrate this connection by studying the stability of perturbed deterministic and stochastic differential equations with fixed time delays in the displacement and derivative functions. Conditions guaranteeing stable and unstable solution response are derived. It is felt that the connecting thread provides a unified framework for the stability study of delay differential equations in the deterministic and stochastic sense.


Sign in / Sign up

Export Citation Format

Share Document