Enhancing decision support for pattern classification via fuzzy entropy based fuzzy C-Means clustering

Author(s):  
Zhengmao Ye ◽  
Habib Mohamadian
Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 554 ◽  
Author(s):  
Barbara Cardone ◽  
Ferdinando Di Martino

One of the main drawbacks of the well-known Fuzzy C-means clustering algorithm (FCM) is the random initialization of the centers of the clusters as it can significantly affect the performance of the algorithm, thus not guaranteeing an optimal solution and increasing execution times. In this paper we propose a variation of FCM in which the initial optimal cluster centers are obtained by implementing a weighted FCM algorithm in which the weights are assigned by calculating a Shannon Fuzzy Entropy function. The results of the comparison tests applied on various classification datasets of the UCI Machine Learning Repository show that our algorithm improved in all cases relating to the performances of FCM.


2019 ◽  
Vol 8 (4) ◽  
pp. 9548-9551

Fuzzy c-means clustering is a popular image segmentation technique, in which a single pixel belongs to multiple clusters, with varying degree of membership. The main drawback of this method is it sensitive to noise. This method can be improved by incorporating multiresolution stationary wavelet analysis. In this paper we develop a robust image segmentation method using Fuzzy c-means clustering and wavelet transform. The experimental result shows that the proposed method is more accurate than the Fuzzy c-means clustering.


Sign in / Sign up

Export Citation Format

Share Document