scholarly journals A Novel Fuzzy Entropy-Based Method to Improve the Performance of the Fuzzy C-Means Algorithm

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 554 ◽  
Author(s):  
Barbara Cardone ◽  
Ferdinando Di Martino

One of the main drawbacks of the well-known Fuzzy C-means clustering algorithm (FCM) is the random initialization of the centers of the clusters as it can significantly affect the performance of the algorithm, thus not guaranteeing an optimal solution and increasing execution times. In this paper we propose a variation of FCM in which the initial optimal cluster centers are obtained by implementing a weighted FCM algorithm in which the weights are assigned by calculating a Shannon Fuzzy Entropy function. The results of the comparison tests applied on various classification datasets of the UCI Machine Learning Repository show that our algorithm improved in all cases relating to the performances of FCM.

Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 258
Author(s):  
Tran Dinh Khang ◽  
Manh-Kien Tran ◽  
Michael Fowler

Clustering is an unsupervised machine learning method with many practical applications that has gathered extensive research interest. It is a technique of dividing data elements into clusters such that elements in the same cluster are similar. Clustering belongs to the group of unsupervised machine learning techniques, meaning that there is no information about the labels of the elements. However, when knowledge of data points is known in advance, it will be beneficial to use a semi-supervised algorithm. Within many clustering techniques available, fuzzy C-means clustering (FCM) is a common one. To make the FCM algorithm a semi-supervised method, it was proposed in the literature to use an auxiliary matrix to adjust the membership grade of the elements to force them into certain clusters during the computation. In this study, instead of using the auxiliary matrix, we proposed to use multiple fuzzification coefficients to implement the semi-supervision component. After deriving the proposed semi-supervised fuzzy C-means clustering algorithm with multiple fuzzification coefficients (sSMC-FCM), we demonstrated the convergence of the algorithm and validated the efficiency of the method through a numerical example.


2012 ◽  
Vol 182-183 ◽  
pp. 1681-1685
Author(s):  
Tian Wu Zhang ◽  
Gong Bing Guo

Fuzzy C-means clustering algorithm(FCM) is sensitive to its initialization of value and noise data and easy to fall into local minimum points, while it can’t get the global optimal solution. This paper introduces gravitation and density weight into the process of clustering, and proposes a gravitational Fuzzy C-Means clustering algorithm based on density weight (DWGFCM). The experimental results show that the algorithm has better global optimal solution, overcomes the shortcomings of traditional Fuzzy C-means clustering algorithm. Clustering results are obviously better than FCM algorithm.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 531
Author(s):  
Ferdinando Di Martino ◽  
Salvatore Sessa

Cluster techniques are used in hotspot spatial analysis to detect hotspots as areas on the map; an extension of the Fuzzy C-means that the clustering algorithm has been applied to locate hotspots on the map as circular areas; it represents a good trade-off between the accuracy in the detection of the hotspot shape and the computational complexity. However, this method does not measure the reliability of the detected hotspots and therefore does not allow us to evaluate how reliable the identification of a hotspot of a circular area corresponding to the detected cluster is; a measure of the reliability of hotspots is crucial for the decision maker to assess the need for action on the area circumscribed by the hotspots. We propose a method based on the use of De Luca and Termini’s Fuzzy Entropy that uses this extension of the Fuzzy C-means algorithm and measures the reliability of detected hotspots. We test our method in a disease analysis problem in which hotspots corresponding to areas where most oto-laryngo-pharyngeal patients reside, within a geographical area constituted by the province of Naples, Italy, are detected as circular areas. The results show a dependency between the reliability and fluctuation of the values of the degrees of belonging to the hotspots.


2002 ◽  
Vol 02 (04) ◽  
pp. 557-572 ◽  
Author(s):  
ADAM SCHENKER ◽  
MARK LAST ◽  
HORST BUNKE ◽  
ABRAHAM KANDEL

In this paper we present a genetically enhanced version of the classical fuzzy c-means clustering algorithm. Our algorithm uses an evolutionary method to find optimal values for some scaling constants which are used to scale the various dimensions of the given data set so that clusters can be more easily detected by compensating for differences in distributions among features. We demonstrate how using un-scaled data with the conventional fuzzy c-means algorithm can lead to incorrect classification and how our algorithm overcomes the problem. We present the results of applying our method to both a synthetic data set, which we created to demonstrate the problem, and the standard Iris data set. In both cases, reduction of misclassifications was obtained by the new method, demonstrating improvement over the standard fuzzy c-means algorithm.


2013 ◽  
Vol 419 ◽  
pp. 814-819
Author(s):  
Xian Zang ◽  
Kil To Chong

This paper proposes a novel clustering algorithm named global kernel fuzzy-c means (GK-FCM) to segment the speech into small non-overlapping blocks for consonant/vowel segmentation. This algorithm is realized by embedding global optimization and kernelization into the classical fuzzy c-means clustering algorithm. It proceeds in an incremental way attempting to optimally add new cluster center at each stage through the kernel-based fuzzy c-means. By solving all the intermediate problems, the final near-optimal solution is determined in a deterministic way. This algorithm overcomes the well-known shortcomings of fuzzy c-means and improves the clustering accuracy. Simulation results demonstrate the effectiveness of the proposed method in consonant/vowel segmentation.


2021 ◽  
Vol 13 (11) ◽  
pp. 5823
Author(s):  
Ahmadhon Akbarkhonovich Kamolov ◽  
Suhyun Park

Implementing AI in all fields is a solution to the complications that can be troublesome to solve for human beings and will be the key point of the advancement of those spheres. In the marine world, specialists also encounter some problems that can be revealed through addressing AI and machine learning algorithms. One of these challenges is determining the depth of the seabed with high precision. The depth of the seabed is utterly significant in the procedure of ships at sea occupying a safe route. Thus, it is considerably crucial that the ships do not sit in shallow water. In this article, we have addressed the fuzzy c-means (FCM) clustering algorithm, which is one of the vigorous unsupervised learning methods under machine learning to solve the mentioned problems. In the case study, crowdsourced data have been trained, which are gathered from vessels that have installed sound navigation and ranging (SONAR) sensors. The data for the training were collected from ships sailing in the south part of South Korea. In the training section, we segregated the training zone into the diminutive size areas (blocks). The data assembled in blocks had been trained in FCM. As a result, we have received data separated into clusters that can be supportive to differentiate data. The results of the effort show that FCM can be implemented and obtain accurate results on crowdsourced bathymetry.


2020 ◽  
Vol 15 ◽  
pp. 155892502097832
Author(s):  
Jiaqin Zhang ◽  
Jingan Wang ◽  
Le Xing ◽  
Hui’e Liang

As the precious cultural heritage of the Chinese nation, traditional costumes are in urgent need of scientific research and protection. In particular, there are scanty studies on costume silhouettes, due to the reasons of the need for cultural relic protection, and the strong subjectivity of manual measurement, which limit the accuracy of quantitative research. This paper presents an automatic measurement method for traditional Chinese costume dimensions based on fuzzy C-means clustering and silhouette feature point location. The method is consisted of six steps: (1) costume image acquisition; (2) costume image preprocessing; (3) color space transformation; (4) object clustering segmentation; (5) costume silhouette feature point location; and (6) costume measurement. First, the relative total variation model was used to obtain the environmental robustness and costume color adaptability. Second, the FCM clustering algorithm was used to implement image segmentation to extract the outer silhouette of the costume. Finally, automatic measurement of costume silhouette was achieved by locating its feature points. The experimental results demonstrated that the proposed method could effectively segment the outer silhouette of a costume image and locate the feature points of the silhouette. The measurement accuracy could meet the requirements of industrial application, thus providing the dual value of costume culture research and industrial application.


Sign in / Sign up

Export Citation Format

Share Document