Generalized Minimum Phase Property for Finite-Dimensional Continuous-Time SISO LTI Systems with Additive Disturbances

Author(s):  
Zigang Pan ◽  
Tamer Basar
2005 ◽  
Vol 02 (03) ◽  
pp. 251-258
Author(s):  
HANLIN HE ◽  
QIAN WANG ◽  
XIAOXIN LIAO

The dual formulation of the maximal-minimal problem for an objective function of the error response to a fixed input in the continuous-time systems is given by a result of Fenchel dual. This formulation probably changes the original problem in the infinite dimensional space into the maximal problem with some restrained conditions in the finite dimensional space, which can be researched by finite dimensional space theory. When the objective function is given by the norm of the error response, the maximum of the error response or minimum of the error response, the dual formulation for the problems of L1-optimal control, the minimum of maximal error response, and the minimal overshoot etc. can be obtained, which gives a method for studying these problems.


2004 ◽  
Vol 22 (2) ◽  
pp. 499-505
Author(s):  
Robert J. Elliott ◽  
Lakhdar Aggoun ◽  
Ali Benmerzouga

2018 ◽  
Vol 21 (5) ◽  
pp. 2395-2406 ◽  
Author(s):  
Youling Zhang ◽  
Qiuguo Zhu ◽  
Rong Xiong

1995 ◽  
Vol 27 (01) ◽  
pp. 146-160
Author(s):  
Lakhdar Aggoun ◽  
Robert J. Elliott

A continuous-time, non-linear filtering problem is considered in which both signal and observation processes are Markov chains. New finite-dimensional filters and smoothers are obtained for the state of the signal, for the number of jumps from one state to another, for the occupation time in any state of the signal, and for joint occupation times of the two processes. These estimates are then used in the expectation maximization algorithm to improve the parameters in the model. Consequently, our filters and model are adaptive, or self-tuning.


Author(s):  
Yingxu Wang ◽  
Guoming G. Zhu ◽  
Ranjan Mukherjee

Early research showed that a zero-order hold is able to convert a continuous-time non-minimum-phase (NMP) system to a discrete-time minimum-phase (MP) system with a sufficiently large sampling period. However the resulting sample period is often too large to adequately cover the original NMP system dynamics and hence not suitable for control application to take advantage of a discrete-time MP system. This problem was solved using different sample and hold inputs (SHI) to reduce the sampling period significantly for MP discrete-time system. Three SHIs were studied analytically and they are square pulse, forward triangle and backward triangle SHIs. To validate the finding experimentally, a dual-loop linear quadratic regulator (LQR) control configuration is designed for the Quanser single inverted pendulum (SIP) system, where the SIP system is stabilized using the Quanser continuous-time LQR (the first loop) and an additional discrete-time LQR (the second loop) with the proposed SHIs to reduce the cart oscillation. The experimental results show more than 75% reduction of the steady-state cart displacement variance over the single-loop Quanser controller and hence demonstrated the effectiveness of the proposed SHI.


Sign in / Sign up

Export Citation Format

Share Document