Experimental investigation into the performance of air source heat pump system for space heating and hot water production in cold region

Author(s):  
Yan Chen ◽  
Weihua Cui ◽  
Jun Wang ◽  
Desheng Sun
2012 ◽  
Vol 238 ◽  
pp. 478-481
Author(s):  
Zhen Qing Wang ◽  
Yan Chen ◽  
Hai Xia Wang

An air source heat pump system (ASHPS) was set up, which provided space heating and cooling, as well as hot water for an office building in Tianjin. Its operating performance in winter was evaluated based on test data. Considering the local abundant solar radiation and the way to provide energy in an office building, a simulation study was carried out on the combsystem of ASHP and flat plate air collector (FPAC). The effects of collector area and its outlet parameters on the heating performance of ASHP were studied, and the favorable operating and matching mode were recommended. The results indicate that ASHPS is a technically viable method in Tianjin in winter, but not economically, and the air-solar combsystem should be taken into account for its massive replacement for conventional energy.


Author(s):  
Jenny Chu ◽  
Cynthia A. Cruickshank ◽  
Wilkie Choi ◽  
Stephen J. Harrison

Heat pumps are commonly used for residential space-heating and cooling. The combination of solar thermal and heat pump systems as a single solar-assisted heat pump (SAHP) system can significantly reduce residential energy consumption in Canada. As a part of Team Ontario’s efforts to develop a high performance house for the 2013 DOE Solar Decathlon Competition, an integrated mechanical system (IMS) consisting of a SAHP was investigated. The system is designed to provide domestic hot water, space-heating, space-cooling and dehumidification. The system included a cold and a hot thermal storage tank and a heat pump to move energy from the low temperature reservoir, to the hot. The solar thermal collectors supplies heat to the cold storage and operate at a higher efficiency due to the heat pump reducing the temperature of the collector working fluid. The combination of the heat pump and solar thermal collectors allows more heat to be harvested at a lower temperature, and then boosted to a suitable temperature for domestic use via the heat pump. The IMS and the building’s energy loads were modeled using the TRNSYS simulation software. A parametric study was conducted to optimize the control, sizing and configuration of the system. This paper provides an overview of the model and summarizes the results of the study. The simulation results suggested that the investigated system can achieve a free energy ratio of about 0.583 for a high performance house designed for the Ottawa climate.


2014 ◽  
Vol 953-954 ◽  
pp. 136-143
Author(s):  
Jin Shun Wu ◽  
Yue Bo Hu ◽  
De Zhi Hu ◽  
Hong Wei Liu

In winter,Many families use air source heat pump because of the low evaporation temperature of the system, resulting in lower heating efficiency of system. To solve this problem, the low temperature solar assisted hot water was added to the project which is on the basis of air source heat pump, and the system has been tested. After analysis of the collection efficiency of solar collectors at low temperatures and comparative analysis of the temperature cycle, pressure, energy consumption of the low-temperature solar-assisted systems and air source heat pump system, the optimal collector temperature and law of heat pump refrigerant cycle changes of the system were obtained. Theoretically, comparative analysis of low temperature air source heat pumps and solar hot water secondary air source heat pump compression ratio and COP. It gives the key parameters affecting the compression ratio and COP, pointing out ways to improve the heat pump COP. Finally, a key measure to improve the thermal performance of the unit system is proposed, to provide a reference for future practical applications and research. Foreword Air source heat pump in ambient air contains rich low grade solar potential as a source of heat, it has inexhaustible characteristics [1] . The main reason for restricting the use of air source heat pump in northern area of our country is when the outdoor air temperature is low in winter, the outdoor coil frost severe heating efficiency air source heat pump is greatly reduced. Martinez suggested experimental study on the application of solar radiant floor heating systems , solar water temperature is 50-60°C, low efficiency, especially when overcast snow lower system efficiency [2] .In view of the outdoor coil frosting problem, direct expansion solar assisted heat pump water heater system using the proposed by Li Yuwu, from a certain extent alleviated the problem of heat in winter for coil winter fros, improving the heating coefficient and improved the operating characteristics of the unit. However, this system requires the direct absorption of heat in air tube, and the specific heat of air is small, difficult to heat storage, illumination by solar radiation impact, unstable system operation [3]. Based on the above issues, for the low-level office building , the new rural residential , this study presents low temperature solar auxiliary air source heat pump system , the device uses low-temperature solar hot water heat pump system as low , both full use of solar energy , but also eliminates the original system frost problems and improve the efficiency of solar collectors and heat set to improve the evaporation temperature of the evaporator , thereby increasing the compression ratio of the heat pump unit .


Sign in / Sign up

Export Citation Format

Share Document