An adaptive penalty function with meta-modeling for constrained problems

Author(s):  
Oliver Kramer ◽  
Uli Schlachter ◽  
Valentin Spreckels
Author(s):  
Ishaan R. Kale ◽  
Anand J. Kulkarni

AbstractRecently, several socio-/bio-inspired algorithms have been proposed for solving a variety of problems. Generally, they perform well when applied for solving unconstrained problems; however, their performance degenerates when applied for solving constrained problems. Several types of penalty function approaches have been proposed so far for handling linear and non-linear constraints. Even though the approach is quite easy to understand, the precise choice of penalty parameter is very much important. It may further necessitate significant number of preliminary trials. To overcome this limitation, a new self-adaptive penalty function (SAPF) approach is proposed and incorporated into socio-inspired Cohort Intelligence (CI) algorithm. This approach is referred to as CI–SAPF. Furthermore, CI–SAPF approach is hybridized with Colliding Bodies Optimization (CBO) algorithm referred to as CI–SAPF–CBO algorithm. The performance of the CI–SAPF and CI–SAPF–CBO algorithms is validated by solving discrete and mixed variable problems from truss structure domain, design engineering domain, and several problems of linear and nonlinear in nature. Furthermore, the applicability of the proposed techniques is validated by solving two real-world applications from manufacturing engineering domain. The results obtained from CI–SAPF and CI–SAPF–CBO are promising and computationally efficient when compared with other nature inspired optimization algorithms. A non-parametric Wilcoxon’s rank sum test is performed on the obtained statistical solutions to examine the significance of CI–SAPF–CBO. In addition, the effect of the penalty parameter on pseudo-objective function, penalty function and constrained violations is analyzed and discussed along with the advantages over other algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Geng Lin ◽  
Wenxing Zhu ◽  
M. Montaz Ali

Hardware/software (HW/SW) partitioning is to determine which components of a system are implemented on hardware and which ones on software. It is one of the most important steps in the design of embedded systems. The HW/SW partitioning problem is an NP-hard constrained binary optimization problem. In this paper, we propose a tabu search-based memetic algorithm to solve the HW/SW partitioning problem. First, we convert the constrained binary HW/SW problem into an unconstrained binary problem using an adaptive penalty function that has no parameters in it. A memetic algorithm is then suggested for solving this unconstrained problem. The algorithm uses a tabu search as its local search procedure. This tabu search has a special feature with respect to solution generation, and it uses a feedback mechanism for updating the tabu tenure. In addition, the algorithm integrates a path relinking procedure for exploitation of newly found solutions. Computational results are presented using a number of test instances from the literature. The algorithm proves its robustness when its results are compared with those of two other algorithms. The effectiveness of the proposed parameter-free adaptive penalty function is also shown.


Author(s):  
Xinghuo Yu ◽  
◽  
Baolin Wu

In this paper, we propose a novel adaptive penalty function method for constrained optimization problems using the evolutionary programming technique. This method incorporates an adaptive tuning algorithm that adjusts the penalty parameters according to the population landscape so that it allows fast escape from a local optimum and quick convergence toward a global optimum. The method is simple and computationally effective in the sense that only very few penalty parameters are needed for tuning. Simulation results of five well-known benchmark problems are presented to show the performance of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ayang Xiao ◽  
Benli Wang ◽  
Chaoli Sun ◽  
Shijie Zhang ◽  
Zhenguo Yang

Due to the fact that vastly different variables and constraints are simultaneously considered, truss layout optimization is a typical difficult constrained mixed-integer nonlinear program. Moreover, the computational cost of truss analysis is often quite expensive. In this paper, a novel fitness estimation based particle swarm optimization algorithm with an adaptive penalty function approach (FEPSO-AP) is proposed to handle this problem. FEPSO-AP adopts a special fitness estimate strategy to evaluate the similar particles in the current population, with the purpose to reduce the computational cost. Further more, a laconic adaptive penalty function is employed by FEPSO-AP, which can handle multiple constraints effectively by making good use of historical iteration information. Four benchmark examples with fixed topologies and up to 44 design dimensions were studied to verify the generality and efficiency of the proposed algorithm. Numerical results of the present work compared with results of other state-of-the-art hybrid algorithms shown in the literature demonstrate that the convergence rate and the solution quality of FEPSO-AP are essentially competitive.


Sign in / Sign up

Export Citation Format

Share Document