A differential evolution algorithm with variable neighborhood search for multidimensional knapsack problem

Author(s):  
M. Fatih Tasgetiren ◽  
Quan-Ke Pan ◽  
Damla Kizilay ◽  
Gursel Suer
2016 ◽  
Vol 835 ◽  
pp. 847-857 ◽  
Author(s):  
Wen Bo Liu

Permutation flowshop scheduling problem (PFSP) is a classical NP-hard combinatorial optimization problem, which provides a challenge for evolutionary algorithms.Since it has been shown that simple evolutionary algorithms cannot solve the PFSP efficiently, local search methods are often adopted to improve the exploitation ability of evolutionary algorithms. In this paper, a hybrid differential evolution algorithm is developed to solve this problem. This hybrid algorithm is designed by incorporating a dynamic variable neighborhood search (DVNS) into the differential evolution. In the DVNS, the neighborhood is based on multiple moves and its size can be dynamically changed from small to large so as to obtain a balance between exploitation and exploration. In addition, a population monitoring and adjusting mechanism is also incorporated to enhance the search diversity and avoid being trapped in local optimum.Experimental results on benchmark problems illustrated the efficiency of the proposed algorithm.


2012 ◽  
Vol 3 (4) ◽  
pp. 43-63 ◽  
Author(s):  
Mahdi Khemakhem ◽  
Boukthir Haddar ◽  
Khalil Chebil ◽  
Saïd Hanafi

This paper proposes a new hybrid tree search algorithm to the Multidimensional Knapsack Problem (MKP) that effectively combines tabu search with a dynamic and adaptive neighborhood search procedure. The authors’ heuristic, based on a filter-and-fan (F&F) procedure, uses a Linear Programming-based Heuristic to generate a starting solution to the F&F process. A tabu search procedure is used to try to enhance the best solution value provided by the F&F method that generates compound moves by a strategically truncated form of tree search. They report the first application of the F&F method to the MKP. Experimental results obtained on a wide set of benchmark problems clearly demonstrate the competitiveness of the proposed method compared to the state-of-the-art heuristic methods.


Sign in / Sign up

Export Citation Format

Share Document