Financial Transaction Forecasting using Neural Network and Bayesian Optimization

Author(s):  
Mark Wu
Author(s):  
Xingchen Ma ◽  
Amal Rannen Triki ◽  
Maxim Berman ◽  
Christos Sagonas ◽  
Jacques Cali ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2411
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk ◽  
Mihael Gudlin

Intelligent fault diagnosis can be related to applications of machine learning theories to machine fault diagnosis. Although there is a large number of successful examples, there is a gap in the optimization of the hyper-parameters of the machine learning model, which ultimately has a major impact on the performance of the model. Machine learning experts are required to configure a set of hyper-parameter values manually. This work presents a convolutional neural network based data-driven intelligent fault diagnosis technique for rotary machinery which uses model with optimized hyper-parameters and network structure. The proposed technique input raw three axes accelerometer signal as high definition 1-D data into deep learning layers with optimized hyper-parameters. Input is consisted of wide 12,800 × 1 × 3 vibration signal matrix. Model learning phase includes Bayesian optimization that optimizes hyper-parameters of the convolutional neural network. Finally, by using a Convolutional Neural Network (CNN) model with optimized hyper-parameters, classification in one of the 8 different machine states and 2 rotational speeds can be performed. This study accomplished the effective classification of different rotary machinery states in different rotational speeds using optimized convolutional artificial neural network for classification of raw three axis accelerometer signal input. Overall classification accuracy of 99.94% on evaluation set is obtained with the CNN model based on 19 layers. Additionally, more data are collected on the same machine with altered bearings to test the model for overfitting. Result of classification accuracy of 100% on second evaluation set has been achieved, proving the potential of using the proposed technique.


2020 ◽  
Author(s):  
Alexander Feigin ◽  
Aleksei Seleznev ◽  
Dmitry Mukhin ◽  
Andrey Gavrilov ◽  
Evgeny Loskutov

<p>We suggest a new method for construction of data-driven dynamical models from observed multidimensional time series. The method is based on a recurrent neural network (RNN) with specific structure, which allows for the joint reconstruction of both a low-dimensional embedding for dynamical components in the data and an operator describing the low-dimensional evolution of the system. The key link of the method is a Bayesian optimization of both model structure and the hypothesis about the data generating law, which is needed for constructing the cost function for model learning.  The form of the model we propose allows us to construct a stochastic dynamical system of moderate dimension that copies dynamical properties of the original high-dimensional system. An advantage of the proposed method is the data-adaptive properties of the RNN model: it is based on the adjustable nonlinear elements and has easily scalable structure. The combination of the RNN with the Bayesian optimization procedure efficiently provides the model with statistically significant nonlinearity and dimension.<br>The method developed for the model optimization aims to detect the long-term connections between system’s states – the memory of the system: the cost-function used for model learning is constructed taking into account this factor. In particular, in the case of absence of interaction between the dynamical component and noise, the method provides unbiased reconstruction of the hidden deterministic system. In the opposite case when the noise has strong impact on the dynamics, the method yield a model in the form of a nonlinear stochastic map determining the Markovian process with memory. Bayesian approach used for selecting both the optimal model’s structure and the appropriate cost function allows to obtain the statistically significant inferences about the dynamical signal in data as well as its interaction with the noise components.<br>Data driven model derived from the relatively short time series of the QG3 model – the high dimensional nonlinear system producing chaotic behavior – is shown be able to serve as a good simulator for the QG3 LFV components. The statistically significant recurrent states of the QG3 model, i.e. the well-known teleconnections in NH, are all reproduced by the model obtained. Moreover, statistics of the residence times of the model near these states is very close to the corresponding statistics of the original QG3 model. These results demonstrate that the method can be useful in modeling the variability of the real atmosphere.</p><p>The work was supported by the Russian Science Foundation (Grant No. 19-42-04121).</p>


2021 ◽  
Author(s):  
◽  
Mashall Aryan

<p>The solution to many science and engineering problems includes identifying the minimum or maximum of an unknown continuous function whose evaluation inflicts non-negligible costs in terms of resources such as money, time, human attention or computational processing. In such a case, the choice of new points to evaluate is critical. A successful approach has been to choose these points by considering a distribution over plausible surfaces, conditioned on all previous points and their evaluations. In this sequential bi-step strategy, also known as Bayesian Optimization, first a prior is defined over possible functions and updated to a posterior in the light of available observations. Then using this posterior, namely the surrogate model, an infill criterion is formed and utilized to find the next location to sample from. By far the most common prior distribution and infill criterion are Gaussian Process and Expected Improvement, respectively.    The popularity of Gaussian Processes in Bayesian optimization is partially due to their ability to represent the posterior in closed form. Nevertheless, the Gaussian Process is afflicted with several shortcomings that directly affect its performance. For example, inference scales poorly with the amount of data, numerical stability degrades with the number of data points, and strong assumptions about the observation model are required, which might not be consistent with reality. These drawbacks encourage us to seek better alternatives. This thesis studies the application of Neural Networks to enhance Bayesian Optimization. It proposes several Bayesian optimization methods that use neural networks either as their surrogates or in the infill criterion.    This thesis introduces a novel Bayesian Optimization method in which Bayesian Neural Networks are used as a surrogate. This has reduced the computational complexity of inference in surrogate from cubic (on the number of observation) in GP to linear. Different variations of Bayesian Neural Networks (BNN) are put into practice and inferred using a Monte Carlo sampling. The results show that Monte Carlo Bayesian Neural Network surrogate could performed better than, or at least comparably to the Gaussian Process-based Bayesian optimization methods on a set of benchmark problems.  This work develops a fast Bayesian Optimization method with an efficient surrogate building process. This new Bayesian Optimization algorithm utilizes Bayesian Random-Vector Functional Link Networks as surrogate. In this family of models the inference is only performed on a small subset of the entire model parameters and the rest are randomly drawn from a prior. The proposed methods are tested on a set of benchmark continuous functions and hyperparameter optimization problems and the results show the proposed methods are competitive with state-of-the-art Bayesian Optimization methods.  This study proposes a novel Neural network-based infill criterion. In this method locations to sample from are found by minimizing the joint conditional likelihood of the new point and parameters of a neural network. The results show that in Bayesian Optimization methods with Bayesian Neural Network surrogates, this new infill criterion outperforms the expected improvement.   Finally, this thesis presents order-preserving generative models and uses it in a variational Bayesian context to infer Implicit Variational Bayesian Neural Network (IVBNN) surrogates for a new Bayesian Optimization. This new inference mechanism is more efficient and scalable than Monte Carlo sampling. The results show that IVBNN could outperform Monte Carlo BNN in Bayesian optimization of hyperparameters of machine learning models.</p>


Sign in / Sign up

Export Citation Format

Share Document