Task allocation method of manned/unmanned aerial vehicle formation based on extended CNP

Author(s):  
Liu Yuefeng ◽  
Zou Jie ◽  
Sun Houjun
Robotica ◽  
2021 ◽  
pp. 1-25
Author(s):  
An Zhang ◽  
Mi Yang ◽  
Bi Wenhao ◽  
Fei Gao

Abstract This paper considers the task allocation problem under the requirement that the assignments of some critical tasks must be maximized when the network capacity cannot accommodate all tasks due to the limited capacity for each unmanned aerial vehicle (UAV). To solve this problem, this paper proposes an extended performance impact algorithm with critical tasks (EPIAC) based on the traditional performance impact algorithm. A novel task list resizing phase is developed in EPIAC to deal with the constraint on the limited capacity of each UAV and maximize the assignments of critical tasks. Numerical simulations demonstrate the outstanding performance of EPIAC compared with other algorithms.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141667814 ◽  
Author(s):  
Chao Chen ◽  
Jiyang Zhang ◽  
Daibing Zhang ◽  
Lincheng Shen

Tilt-rotor unmanned aerial vehicles have attracted increasing attention due to their ability to perform vertical take-off and landing and their high-speed cruising abilities, thereby presenting broad application prospects. Considering portability and applications in tasks characterized by constrained or small scope areas, this article presents a compact tricopter configuration tilt-rotor unmanned aerial vehicle with full modes of flight from the rotor mode to the fixed-wing mode and vice versa. The unique multiple modes make the tilt-rotor unmanned aerial vehicle a multi-input multi-output, non-affine, multi-channel cross coupling, and nonlinear system. Considering these characteristics, a control allocation method is designed to make the controller adaptive to the full modes of flight. To reduce the cost, the accurate dynamic model of the tilt-rotor unmanned aerial vehicle is not obtained, so a full-mode flight strategy is designed in view of this situation. An autonomous flight test was conducted, and the results indicate the satisfactory performance of the control allocation method and flight strategy.


Author(s):  
Fei Yan ◽  
Xiaoping Zhu ◽  
Zhou Zhou ◽  
Yang Tang

The coupled task allocation and path planning problem for heterogeneous multiple unmanned aerial vehicles performing a search and attack mission involving obstacles and no-fly zones are addressed. The importance of the target is measured using a time-dependent value. A task allocation algorithm is proposed to obtain the maximum system utility. In the system utility function, the reward of the target, path lengths of unmanned aerial vehicles, and number of unmanned aerial vehicles to perform a simultaneous attack are considered. The path length of the unmanned aerial vehicles based on the Pythagorean hodograph curve is calculated, and it serves as the input for the task allocation problem. A resource management method for unmanned aerial vehicles is used, so that the resource consumption of the unmanned aerial vehicles can be balanced. To satisfy the requirement of simultaneous attacks and the unmanned aerial vehicle kinematic constraints in an environment involving obstacles and no-fly zones, a distributed cooperative particle swarm optimization algorithm is developed to generate flyable and safe Pythagorean hodograph curve trajectories for unmanned aerial vehicles to achieve simultaneous arrival. Monte Carlo simulations are conducted to demonstrate the performance of the proposed task allocation and path planning method.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0194690 ◽  
Author(s):  
He Luo ◽  
Zhengzheng Liang ◽  
Moning Zhu ◽  
Xiaoxuan Hu ◽  
Guoqiang Wang

Sign in / Sign up

Export Citation Format

Share Document