Investigation for the optimized active power control of Direct Drive Permanent Magnet Wind Turbine Generators

Author(s):  
Aisikaer ◽  
Yongli Zhu ◽  
Panagiotis Panousis
2019 ◽  
Vol 10 (2) ◽  
pp. 822-832 ◽  
Author(s):  
Xuesong Tang ◽  
Minghui Yin ◽  
Chun Shen ◽  
Yan Xu ◽  
Zhao Yang Dong ◽  
...  

2021 ◽  
Author(s):  
Austin C. Hayes ◽  
Gregory L. Whiting

Abstract Permanent magnet direct drive (PMDD) electric machines are advantageous due to higher efficiencies and lower maintenance concerns. For wind turbine generators, especially offshore turbines, this is advantageous to geared machines and is currently implemented by manufacturers such as GE, Siemens and Enercon. By nature, a direct drive machine must be larger than its geared counterpart in order to output the same power. As a result, the structural mass is larger and makes the machine prohibitively large. However, the structural mass and electromagnetic design is coupled and the electromagnetic criteria are an important consideration in the structural design. In this analysis, the electromagnetic design of a 5 MW PMDD generator was coupled to a triply periodic minimal surface (TPMS) lattice generator through means of an evolutionary algorithm. Finite element analysis (FEA) was used to determine the radial, torsional, and axial deformations under simulated wind turbine generator loading conditions subject to critical deflection criteria. Lattice functional grading was completed with the FEA deflection data in order to further optimize the structural mass. For the 5 MW test case, functional graded TPMS support structures maintained stiffness for a generator with a 32% higher force density with inactive mass 4% lower than baseline. This study suggests functional grading of TPMS lattice structures for wind turbine generators has the potential at significant mass savings.


2019 ◽  
Vol 1256 ◽  
pp. 012030 ◽  
Author(s):  
Andrés Guggeri ◽  
Martín Draper ◽  
Bruno López ◽  
Gabriel Usera

Author(s):  
Austin C. Hayes ◽  
Gregory L. Whiting

Abstract Additive manufacturing enables the production of complex geometries extremely difficult to create with conventional subtractive methods. While good at producing complex parts, its limitations can be seen through its penetration into everyday manufacturing markets. Throughput limitations, poor surface roughness, limited material selection, and repeatability concerns hinder additive manufacturing from revolutionizing all but the low-volume, high-value markets. This work characterizes combining powder-binder jetting with traditional casting techniques to create large, complex metal parts. Specifically, we extend this technology to wind turbine generators and provide initial feasibility of producing complex direct-drive generator rotor and stator designs. In this process, thermal inkjet printer heads selectively deposit binder on hydroperm casting powder. This powder is selectively solidified and baked to remove moisture before being cast through traditional methods. This work identifies a scalable manufacturing process to print large-scale wind turbine direct drive generators. As direct-drive generators are substantially larger than their synchronous counterparts, a printing process must be able to be scaled for a 2–5 MW 2–6m machine. For this study, research on the powder, binder, and printing parameters is conducted and evaluated for scalability.


Author(s):  
Mahmood Mirzaei ◽  
Mohsen Soltani ◽  
Niels K. Poulsen ◽  
Hans H. Niemann

Sign in / Sign up

Export Citation Format

Share Document