structural mass
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 40)

H-INDEX

23
(FIVE YEARS 4)

Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Raquel Alonso Castilla ◽  
Florent Lutz ◽  
Joël Jézégou ◽  
Emmanuel Bénard

In the context of reducing the environmental footprint of tomorrow’s aviation, Distributed Electric Propulsion (DEP) has become an increasingly interesting concept. With the strong coupling between disciplines that this technology brings forth, multiple benefits are expected for the overall aircraft design. These interests have been observed not only in the aerodynamic properties of the aircraft but also in the structural design. However, current statistical models used in conceptual design have shown limitations regarding the benefits and challenges coming from these new design trends. As for other methods, they are either not adapted for use in a conceptual design phase or do not cover CS-23 category aircraft. This paper details a semi-analytical methodology compliant with the performance-based certification criteria presented by the European Union Aviation Safety Agency (EASA) to predict the structural mass breakdown of a wing. This makes the method applicable to any aircraft regulated by EASA CS-23. Results have been validated with the conventional twin-engine aircraft Beechcraft 76, the innovative NASA X-57 Maxwell concept using DEP, and the commuter aircraft Beechcraft 1900.


2021 ◽  
Author(s):  
Dmitry S Loginov ◽  
Jan Fiala ◽  
Peter Brechlin ◽  
Gary Kruppa ◽  
Petr Novak

Methods of structural mass spectrometry have become more popular to study protein structure and dynamics. Among them, fast photochemical oxidation of proteins (FPOP) has several advantages such as irreversibility of modifications and more facile determination of the site of modification with single residue resolution. In the present study, FPOP analysis was applied to study the hemoglobin (Hb) – haptoglobin (Hp) complex allowing identification of respective regions altered upon the complex formation. Oxidative modifications were precisely localized on specific residues using a timsTOF Pro mass spectrometer. The data allowed determination of amino acids directly involved in Hb – Hp interactions and those located outside of the interaction interface yet affected by the complex formation. Data are available via ProteomeXchange with identifier PXD021621.


2021 ◽  
Author(s):  
Vidya Mangala Prasad ◽  
Daniel P. Leaman ◽  
Klaus N. Lovendahl ◽  
Mark A. Benhaim ◽  
Edgar A. Hodge ◽  
...  

SummaryHIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1Å sub-tomogram averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers plus a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.


2021 ◽  
Vol 1172 (1) ◽  
pp. 012001
Author(s):  
M Helal ◽  
B F Felemban ◽  
A Alharthi ◽  
S Almalki ◽  
E Fathallah ◽  
...  

2021 ◽  
Author(s):  
Austin C. Hayes ◽  
Gregory L. Whiting

Abstract Permanent magnet direct drive (PMDD) electric machines are advantageous due to higher efficiencies and lower maintenance concerns. For wind turbine generators, especially offshore turbines, this is advantageous to geared machines and is currently implemented by manufacturers such as GE, Siemens and Enercon. By nature, a direct drive machine must be larger than its geared counterpart in order to output the same power. As a result, the structural mass is larger and makes the machine prohibitively large. However, the structural mass and electromagnetic design is coupled and the electromagnetic criteria are an important consideration in the structural design. In this analysis, the electromagnetic design of a 5 MW PMDD generator was coupled to a triply periodic minimal surface (TPMS) lattice generator through means of an evolutionary algorithm. Finite element analysis (FEA) was used to determine the radial, torsional, and axial deformations under simulated wind turbine generator loading conditions subject to critical deflection criteria. Lattice functional grading was completed with the FEA deflection data in order to further optimize the structural mass. For the 5 MW test case, functional graded TPMS support structures maintained stiffness for a generator with a 32% higher force density with inactive mass 4% lower than baseline. This study suggests functional grading of TPMS lattice structures for wind turbine generators has the potential at significant mass savings.


2021 ◽  
pp. 131140
Author(s):  
Jing Li ◽  
Junli Wu ◽  
Ziyi Xie ◽  
Xinlei Zhang ◽  
Songlei Lv ◽  
...  

Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 141
Author(s):  
Francesco Di Caprio ◽  
Roberto Scigliano ◽  
Roberto Fauci ◽  
Domenico Tescione

Re-entry winged body vehicles have several advantages w.r.t capsules, such as maneuverability and controlled landing opportunity. On the other hand, they show an increment in design level complexity, especially from an aerodynamic, aero-thermodynamic, and structural point of view, and in the difficulties of housing in operative existing launchers. In this framework, the idea of designing unmanned vehicles equipped with deployable wings for suborbital flight was born. This work details a preliminary study for identifying the best configuration for the hinge system aimed at the in-orbit deployment of an unmanned re-entry vehicle’s wings. In particular, the adopted optimization methodology is described. The adopted approach uses a genetic algorithm available in commercial software in conjunction with fully parametric models created in FEM environments and, in particular, it can optimize the hinge position considering both the deployed and folded configuration. The results identify the best hinge configuration that minimizes interface loads, thus, realizing a lighter and more efficient deployment system. Indeed, for such a category of vehicle, it is mandatory to reduce the structural mass, as much as possible in order to increase the payload and reduce service costs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mariusz Kowalski ◽  
Zdobyslaw Jan Goraj ◽  
Bartłomiej Goliszek

Purpose The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological solution. Mass penalty resulting from the installation of the fuselage boundary layer ingestion device was needed in the CENTRELINE project to be able to estimate the real benefits of the applied technology. Design/methodology/approach This paper focusses on the finite element analysis (FEA) of the fuselage and wing primary load-carrying structures. Masses obtained in these analyses were used as an input for the total structural mass calculation based on semi-empirical equations. Findings Combining FEA with semi-empirical equations makes it possible to estimate the mass of structures at an early technology readiness level and gives the possibility of obtaining more accurate results than those obtained using only empirical formulas. The applied methodology allows estimating the mass in case of using unusual structural solutions, which are not covered by formulas available in the literature. Practical implications Accurate structural mass estimation is possible at an earlier design stage of the project based on the presented methodology, which allows for easier and less costly changes in designed aircrafts. Originality/value The presented methodology is an original method of mass estimation based on a two-track approach. The analytical formulas available in the literature have worked well for aeroplanes of conventional design, but thanks to the connection with FEA presented in this paper, it is possible to estimate the structure mass of aeroplanes using unconventional technological solutions.


Sign in / Sign up

Export Citation Format

Share Document