Dynamic Compensation Control Strategy of DC Microgrid Bus Voltage Based on Disturbance Observer

Author(s):  
Changbin Hu ◽  
Huisheng Wang ◽  
Shanna Luo ◽  
Yuntao Shi ◽  
Jinghua Zhou ◽  
...  
2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110262
Author(s):  
Changbin Hu ◽  
Heng Lu ◽  
Haipeng Wang ◽  
Jinghua Zhou ◽  
Shanna Luo ◽  
...  

Aiming at the problem of bus voltage control in DC microgrid, a dynamic compensation control strategy based on a residual generator is designed to complete the voltage compensation of DC-DC converter. Firstly, based on the DC microgrid system architecture, the bus voltage fluctuations are analyzed theoretically, and then the DC-DC converter state-space mathematical models of the DC microgrid system are established to obtain the input-output relationship of the control system. Based on the theory of double coprime decomposition and Youla parameterization stable controller, the proposed control architecture based on the residual generator is obtained, and the output value generated by the current disturbance is compensated in reverse by applying model matching theory. The voltage loop compensation controller Q( s) is obtained by the linear matrix inequality method (LMI), and the current loop compensation controller H( s) is designed according to the dynamic structure diagram of the DC-DC converter. Hardware-in-the-loop simulation (HILS) results show that the architecture can improve the dynamic performance of the DC-DC converter without changing the original system structure parameters, and suppress the DC bus voltage fluctuations caused by load switching, power fluctuations, and AC-side load imbalances, and enhance the robustness of the system.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3140 ◽  
Author(s):  
Weiming Liu ◽  
Tingting Zheng ◽  
Ziwen Liu ◽  
Zhihua Fan ◽  
Yilong Kang ◽  
...  

This paper presents a power compensation strategy to suppress the double frequency power ripples of Voltage source converter high-voltage direct current (VSC-HVDC) systems under unbalanced grid voltage conditions. The mathematical control equations of the double frequency ripple power of VSC under unbalanced operating conditions are firstly derived and established, where the dynamic behaviors of the double frequency ripples in active and reactive power are regarded as being driven by current-relevant components and voltage-relevant components, respectively. Based on the equations, a power compensation control strategy of VSC-HVDC is proposed via the passivity-based control with disturbance observer to suppress both the current-relevant and voltage-relevant components in the power ripples. With this control strategy, the double frequency ripples in active and reactive power are suppressed simultaneously and system performance is significantly enhanced with the implementation of the disturbance observer in the passivity-based control. Theoretical stability analysis and simulation cases show the effectiveness and superiority of the proposed strategy.


2020 ◽  
Vol 185 ◽  
pp. 01064
Author(s):  
Yilonɡ Kanɡ ◽  
Ningkang Zheng ◽  
Xiangyang Yan ◽  
Huanruo Qi ◽  
Kai Li

It is important to achieve stability of bus voltage in control of DC microgrids. In the DC microgrid, the traditional droop control method is usually adopted to stabilize the bus voltage for its high reliability and cost-effectiveness. However, line resistance will reduce the voltage quality of the DC bus in actual situations. In order to improve the voltage quality of the DC bus, a novel bus voltage control strategy based on modified droop characteristic is proposed. Finally, the simulation model of the off-grid DC microgrid with improved droop control strategy is built on PSCAD/EMTDC platform, and the results verify the effectiveness and feasibility of the proposed control strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mingche Li ◽  
Jiangwei Fan ◽  
Lihui Qiao

The main control objective of a DC microgrid with a multibus structure is to stabilize the bus voltage and maintain the power balance of the whole system. An adaptive droop control strategy for multibus DC microgrid based on consensus algorithm is proposed. It is based on platform multiagent system, which is realized by network protocol. Under the condition of a weak communication network, the bus at all levels can realize regional power autonomy through packet consensus protocol. A hybrid simulation platform composed of Jade, MacSimJX, and Simulink is built to verify the effectiveness of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document