The design of an H2 sliding mode controller for a mobile inverted pendulum system is proposed in this paper. This controller is conducted to stabilize the mobile inverted pendulum in the upright position and drive the system to a desired position. Lagrangian approach is used to develop the mathematical model of the system. The H2 controller is combined with the sliding mode control to give a better performance compared to the case of using each of the above controllers alone. The results show that the proposed controller can stabilize the system and drive the output to a given desired input. Furthermore, variations in system parameters and disturbance are considered to illustrate the robustness of the proposed controller.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668427 ◽  
Author(s):  
Te-Jen Su ◽  
Shih-Ming Wang ◽  
Tsung-Ying Li ◽  
Sung-Tsun Shih ◽  
Van-Manh Hoang

The objective of this article is to optimize parameters of a hybrid sliding mode controller based on fireworks algorithm for a nonlinear inverted pendulum system. The proposed controller is a combination of two modified types of the classical sliding mode controller, namely, baseline sliding mode controller and fast output sampling discrete sliding mode controller. The simulation process is carried out with MATLAB/Simulink. The results are compared with a published hybrid method using proportional–integral–derivative and linear quadratic regulator controllers. The simulation results show a better performance of the proposed controller.


2021 ◽  
Vol 18 (2) ◽  
pp. 88-97
Author(s):  
T.J. Shima ◽  
H.A. Bashir

An integral sliding mode controller (ISMC) which employs particle swarm optimization (PSO) algorithm to search for optimal values of the parameters of the integral sliding manifold as well as the gains of the controller is proposed in this work. We considered the swing-up and stabilization of the cart-inverted pendulum system which is assumed to be affected by uncertainties. First, we determined the swing-up and stabilization conditions of the control system by using the internal dynamics of the cart-inverted pendulum system and sliding mode dynamics. A PSO algorithm is then used to search for the optimal values of the ISMC design parameters that satisfy the stabilization condition with the aim of improving the transient performance of the control system. To mitigate the chattering phenomenon, a saturation function of the integral sliding variable was used in the discontinuous control law. Simulation results on swing-up and stabilization of the cart-inverted pendulum system revealed improvement in transient behaviour by reducing settling time (by 52.61%), overshoots (by 45.56%) and required track length for cart movement (by 68.34%).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
SongHyok Ri ◽  
Jian Huang ◽  
Yongji Wang ◽  
MyongHo Kim ◽  
Sonchol An

A terminal sliding mode controller with nonlinear disturbance observer is investigated to control mobile wheeled inverted pendulum system. In order to eliminate the main drawback of the sliding mode control, “chattering” phenomenon, and for compensation of the model uncertainties and external disturbance, we designed a nonlinear disturbance observer of the mobile wheeled inverted pendulum system. Based on the nonlinear disturbance observer, a terminal sliding mode controller is also proposed. The stability of the closed-loop mobile wheeled inverted pendulum system is proved by Lyapunov theorem. Simulation results show that the terminal sliding mode controller with nonlinear disturbance observer can eliminate the “chattering” phenomenon, improve the control precision, and suppress the effects of external disturbance and model uncertainties effectively.


2019 ◽  
Vol 42 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Mohammad Javad Mahmoodabadi ◽  
Hamed Khoobroo Haghbayan

In this paper, a combination of approximate feedback linearization and sliding mode control approaches is applied to stabilize a class of fourth-order nonlinear systems. In order to improve the performance of the proposed controller, design parameters of the sliding surface are adjusted using the adaptation laws, based on the gradient descent technique. Eventually, a new version of particle swarm optimization is implemented to optimize the control gains with respect to the integral of time-weighted absolute errors as the objective function, and a constraint on the maximum control effort value. The introduced idea is put into practice for the under-actuated inverted pendulum system, and the procedure is described with details step by step. The time responses of cart position, pendulum angle, and control effort of the proposed method is then compared with those of several recently published references so as to evaluate the effectiveness of this scenario.


Sign in / Sign up

Export Citation Format

Share Document