scholarly journals Collision-free curvature-bounded smooth path planning using composite Bezier curve based on Voronoi diagram

Author(s):  
Yi-Ju Ho ◽  
Jing-Sin Liu
2016 ◽  
Vol 36 (2) ◽  
pp. 138-145 ◽  
Author(s):  
Baoye Song ◽  
Zidong Wang ◽  
Li Sheng

Purpose The purpose of this paper is to consider the smooth path planning problem for a mobile robot based on the genetic algorithm (GA) and the Bezier curve. Design/methodology/approach The workspace of a mobile robot is described by a new grid-based representation that facilitates the operations of the adopted GA. The chromosome of the GA is composed of a sequence of binary numbered grids (i.e. control points of the Bezier curve). Ordinary genetic operators including crossover and mutation are used to search the optimum chromosome where the optimization criterion is the length of a piecewise collision-free Bezier curve path determined by the control points. Findings This paper has proposed a new smooth path planning for a mobile robot by resorting to the GA and the Bezier curve. A new grid-based representation of the workspace has been presented, which makes it convenient to perform operations in the GA. The GA has been used to search the optimum control points that determine the Bezier curve-based smooth path. The effectiveness of the proposed approach has been verified by a numerical experiment, and some performances of the obtained method have also been analyzed. Research limitations/implications There still remain many interesting topics, for example, how to solve the specific smooth path planning problem by using the GA and how to promote the computational efficiency in the more grids case. These issues deserve further research. Originality/value The purpose of this paper is to improve the existing results by making the following three distinctive contributions: a rigorous mathematical formulation of the path planning optimization problem is formulated; a general grid-based representation (2n × 2n) is proposed to describe the workspace of the mobile robots to facilitate the implementation of the GA where n is chosen according to the trade-off between the accuracy and the computational burden; and the control points of the Bezier curve are directly linked to the optimization criteria so that the generated paths are guaranteed to be optimal without any need for smoothing afterwards.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jianwei Ma ◽  
Yang Liu ◽  
Shaofei Zang ◽  
Lin Wang

In this study, a new method of smooth path planning is proposed based on Bezier curves and is applied to solve the problem of redundant nodes and peak inflection points in the path planning process of traditional algorithms. First, genetic operations are used to obtain the control points of the Bezier curve. Second, a shorter path is selected by an optimization criterion that the length of the Bezier curve is determined by the control points. Finally, a safe distance and adaptive penalty factor are introduced into the fitness function to ensure the safety of the walking process of the robot. Numerous experiments are implemented in two different environments and compared with the existing methods. It is proved that the proposed method is more effective to generate a shorter, smoother, and safer path compared with traditional approaches.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 173
Author(s):  
Hongbo Wang ◽  
Shihan Xu ◽  
Longze Deng

Traffic accidents are often caused by improper lane changes. Although the safety of lane-changing has attracted extensive attention in the vehicle and traffic fields, there are few studies considering the lateral comfort of vehicle users in lane-changing decision-making. Lane-changing decision-making by single-step dynamic game with incomplete information and path planning based on Bézier curve are proposed in this paper to coordinate vehicle lane-changing performance from safety payoff, velocity payoff, and comfort payoff. First, the lane-changing safety distance which is improved by collecting lane-changing data through simulated driving, and lane-changing time obtained by Bézier curve path planning are introduced into the game payoff, so that the selection of the lane-changing start time considers the vehicle safety, power performance and passenger comfort of the lane-changing process. Second, the lane-changing path without collision to the forward vehicle is obtained through the constrained Bézier curve, and the Bézier curve is further constrained to obtain a smoother lane-changing path. The path tracking sliding mode controller of front wheel angle compensation by radical basis function neural network is designed. Finally, the model in the loop simulation and the hardware in the loop experiment are carried out to verify the advantages of the proposed method. The results of three lane-changing conditions designed in the hardware in the loop experiment show that the vehicle safety, power performance, and passenger comfort of the vehicle controlled by the proposed method are better than that of human drivers in discretionary lane change and mandatory lane change scenarios.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 123334-123340 ◽  
Author(s):  
Hongluo Li ◽  
Yutao Luo ◽  
Jie Wu

Sign in / Sign up

Export Citation Format

Share Document