scholarly journals Collision-Free Path Planning for Intelligent Vehicles Based on Bézier Curve

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 123334-123340 ◽  
Author(s):  
Hongluo Li ◽  
Yutao Luo ◽  
Jie Wu
Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 173
Author(s):  
Hongbo Wang ◽  
Shihan Xu ◽  
Longze Deng

Traffic accidents are often caused by improper lane changes. Although the safety of lane-changing has attracted extensive attention in the vehicle and traffic fields, there are few studies considering the lateral comfort of vehicle users in lane-changing decision-making. Lane-changing decision-making by single-step dynamic game with incomplete information and path planning based on Bézier curve are proposed in this paper to coordinate vehicle lane-changing performance from safety payoff, velocity payoff, and comfort payoff. First, the lane-changing safety distance which is improved by collecting lane-changing data through simulated driving, and lane-changing time obtained by Bézier curve path planning are introduced into the game payoff, so that the selection of the lane-changing start time considers the vehicle safety, power performance and passenger comfort of the lane-changing process. Second, the lane-changing path without collision to the forward vehicle is obtained through the constrained Bézier curve, and the Bézier curve is further constrained to obtain a smoother lane-changing path. The path tracking sliding mode controller of front wheel angle compensation by radical basis function neural network is designed. Finally, the model in the loop simulation and the hardware in the loop experiment are carried out to verify the advantages of the proposed method. The results of three lane-changing conditions designed in the hardware in the loop experiment show that the vehicle safety, power performance, and passenger comfort of the vehicle controlled by the proposed method are better than that of human drivers in discretionary lane change and mandatory lane change scenarios.


2019 ◽  
Vol 12 (1) ◽  
pp. 56-65
Author(s):  
Ali N. Abdulnabi

This paper presents a collision-free path planning approaches based on Bézier curve and A-star algorithm for robot manipulator system. The main problem of this work is to finding a feasible collision path planning from initial point to final point to transport the robot arm from the preliminary to the very last within the presence of obstacles, a sequence of joint angles alongside the path have to be determined. To solve this problem several algorithms have been presented among which it can be mention such as Bug algorithms, A-Star algorithms, potential field algorithms, Bézier curve algorithm and intelligent algorithms. In this paper obstacle avoidance algorithms were proposed Bézier and A-Star algorithms, through theoretical studies and simulations with several different cases, it's found verify the effectiveness of the methods suggested. It's founded the Bézier algorithm is smoothing accurate, and effective as compare with the A-star algorithm, but A-star is near to shortest and optimal path to free collision avoidance. The time taken and the elapsed time to traverse from its starting position and to reach the goal are recorded the tabulated results show that the elapsed time with different cases to traverse from the start location to destination using A-star Algorithm is much less as compared to the time taken by the robot using Bézier Algorithm to trace the same path. The robot used was the Lab-Volt of 5DOF Servo Robot System Model 5250 (RoboCIM5250)


Sign in / Sign up

Export Citation Format

Share Document