Detection of speech tokens in noise using adaptive spectrotemporal receptive fields

Author(s):  
Ashwin Bellur ◽  
Mounya Elhilali
2013 ◽  
Vol 109 (1) ◽  
pp. 261-272 ◽  
Author(s):  
Alain de Cheveigné ◽  
Jean-Marc Edeline ◽  
Quentin Gaucher ◽  
Boris Gourévitch

Local field potentials (LFPs) recorded in the auditory cortex of mammals are known to reveal weakly selective and often multimodal spectrotemporal receptive fields in contrast to spiking activity. This may in part reflect the wider “listening sphere” of LFPs relative to spikes due to the greater current spread at low than high frequencies. We recorded LFPs and spikes from auditory cortex of guinea pigs using 16-channel electrode arrays. LFPs were processed by a component analysis technique that produces optimally tuned linear combinations of electrode signals. Linear combinations of LFPs were found to have sharply tuned responses, closer to spike-related tuning. The existence of a sharply tuned component implies that a cortical neuron (or group of neurons) capable of forming a linear combination of its inputs has access to that information. Linear combinations of signals from electrode arrays reveal information latent in the subspace spanned by multichannel LFP recordings and are justified by the fact that the observations themselves are linear combinations of neural sources.


2010 ◽  
Vol 104 (2) ◽  
pp. 784-798 ◽  
Author(s):  
Noopur Amin ◽  
Patrick Gill ◽  
Frédéric E. Theunissen

We estimated the spectrotemporal receptive fields of neurons in the songbird auditory thalamus, nucleus ovoidalis, and compared the neural representation of complex sounds in the auditory thalamus to those found in the upstream auditory midbrain nucleus, mesencephalicus lateralis dorsalis (MLd), and the downstream auditory pallial region, field L. Our data refute the idea that the primary sensory thalamus acts as a simple, relay nucleus: we find that the auditory thalamic receptive fields obtained in response to song are more complex than the ones found in the midbrain. Moreover, we find that linear tuning diversity and complexity in ovoidalis (Ov) are closer to those found in field L than in MLd. We also find prevalent tuning to intermediate spectral and temporal modulations, a feature that is unique to Ov. Thus even a feed-forward model of the sensory processing chain, where neural responses in the sensory thalamus reveals intermediate response properties between those in the sensory periphery and those in the primary sensory cortex, is inadequate in describing the tuning found in Ov. Based on these results, we believe that the auditory thalamic circuitry plays an important role in generating novel complex representations for specific features found in natural sounds.


2011 ◽  
Vol 106 (2) ◽  
pp. 500-514 ◽  
Author(s):  
Joseph W. Schumacher ◽  
David M. Schneider ◽  
Sarah M. N. Woolley

The majority of sensory physiology experiments have used anesthesia to facilitate the recording of neural activity. Current techniques allow researchers to study sensory function in the context of varying behavioral states. To reconcile results across multiple behavioral and anesthetic states, it is important to consider how and to what extent anesthesia plays a role in shaping neural response properties. The role of anesthesia has been the subject of much debate, but the extent to which sensory coding properties are altered by anesthesia has yet to be fully defined. In this study we asked how urethane, an anesthetic commonly used for avian and mammalian sensory physiology, affects the coding of complex communication vocalizations (songs) and simple artificial stimuli in the songbird auditory midbrain. We measured spontaneous and song-driven spike rates, spectrotemporal receptive fields, and neural discriminability from responses to songs in single auditory midbrain neurons. In the same neurons, we recorded responses to pure tone stimuli ranging in frequency and intensity. Finally, we assessed the effect of urethane on population-level representations of birdsong. Results showed that intrinsic neural excitability is significantly depressed by urethane but that spectral tuning, single neuron discriminability, and population representations of song do not differ significantly between unanesthetized and anesthetized animals.


2003 ◽  
Vol 90 (4) ◽  
pp. 2660-2675 ◽  
Author(s):  
Jennifer F. Linden ◽  
Robert C. Liu ◽  
Maneesh Sahani ◽  
Christoph E. Schreiner ◽  
Michael M. Merzenich

The mouse is a promising model system for auditory cortex research because of the powerful genetic tools available for manipulating its neural circuitry. Previous studies have identified two tonotopic auditory areas in the mouse—primary auditory cortex (AI) and anterior auditory field (AAF)— but auditory receptive fields in these areas have not yet been described. To establish a foundation for investigating auditory cortical circuitry and plasticity in the mouse, we characterized receptive-field structure in AI and AAF of anesthetized mice using spectrally complex and temporally dynamic stimuli as well as simple tonal stimuli. Spectrotemporal receptive fields (STRFs) were derived from extracellularly recorded responses to complex stimuli, and frequency-intensity tuning curves were constructed from responses to simple tonal stimuli. Both analyses revealed temporal differences between AI and AAF responses: peak latencies and receptive-field durations for STRFs and first-spike latencies for responses to tone bursts were significantly longer in AI than in AAF. Spectral properties of AI and AAF receptive fields were more similar, although STRF bandwidths were slightly broader in AI than in AAF. Finally, in both AI and AAF, a substantial minority of STRFs were spectrotemporally inseparable. The spectrotemporal interaction typically appeared in the form of clearly disjoint excitatory and inhibitory subfields or an obvious spectrotemporal slant in the STRF. These data provide the first detailed description of auditory receptive fields in the mouse and suggest that although neurons in areas AI and AAF share many response characteristics, area AAF may be specialized for faster temporal processing.


PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e16104 ◽  
Author(s):  
Ana Calabrese ◽  
Joseph W. Schumacher ◽  
David M. Schneider ◽  
Liam Paninski ◽  
Sarah M. N. Woolley

2018 ◽  
Author(s):  
Jonathan Henry Venezia ◽  
Steven Matthew Thurman ◽  
Virginia Richards ◽  
Gregory Hickok

Existing data indicate that cortical speech processing is hierarchically organized. Numerous studies have shown that early auditory areas encode fine acoustic details while later areas encode abstracted speech patterns. However, it remains unclear precisely what speech information is encoded across these hierarchical levels. Estimation of speech-driven spectrotemporal receptive fields (STRFs) provides a means to explore cortical speech processing in terms of acoustic or linguistic information associated with characteristic spectrotemporal patterns. Here, we estimate STRFs from cortical responses to continuous speech in fMRI. Using a novel approach based on filtering randomly-selected spectrotemporal modulations (STMs) from aurally-presented sentences, STRFs were estimated for a group of listeners and categorized using a data-driven clustering algorithm. ‘Behavioral STRFs’ highlighting STMs crucial for speech recognition were derived from intelligibility judgments. Clustering revealed that STRFs in the supratemporal plane represented a broad range of STMs, while STRFs in the lateral temporal lobe represented circumscribed STM patterns important to intelligibility. Detailed analysis recovered a bilateral organization with posterior-lateral regions preferentially processing STMs associated with phonological information and anterior-lateral regions preferentially processing STMs associated with word- and phrase-level information. Regions in lateral Heschl’s gyrus preferentially processed STMs associated with vocalic information (pitch).


2020 ◽  
Author(s):  
Jean-Pierre R. Falet ◽  
Jonathan Côté ◽  
Veronica Tarka ◽  
Zaida-Escila Martinez-Moreno ◽  
Patrice Voss ◽  
...  

AbstractWe present a novel method to map the functional organization of the human auditory cortex noninvasively using magnetoencephalography (MEG). More specifically, this method estimates via reverse correlation the spectrotemporal receptive fields (STRF) in response to a dense pure tone stimulus, from which important spectrotemporal characteristics of neuronal processing can be extracted and mapped back onto the cortex surface. We show that several neuronal populations can be found examining the spectrotemporal characteristics of their STRFs, and demonstrate how these can be used to generate tonotopic gradient maps. In doing so, we show that the spatial resolution of MEG is sufficient to reliably extract important information about the spatial organization of the auditory cortex, while enabling the analysis of complex temporal dynamics of auditory processing such as best temporal modulation rate and response latency given its excellent temporal resolution. Furthermore, because spectrotemporally dense auditory stimuli can be used with MEG, the time required to acquire the necessary data to generate tonotopic maps is significantly less for MEG than for other neuroimaging tools that acquire BOLD-like signals.


2007 ◽  
Vol 98 (4) ◽  
pp. 2182-2195 ◽  
Author(s):  
Craig A. Atencio ◽  
David T. Blake ◽  
Fabrizio Strata ◽  
Steven W. Cheung ◽  
Michael M. Merzenich ◽  
...  

Many communication sounds, such as New World monkey twitter calls, contain frequency-modulated (FM) sweeps. To determine how this prominent vocalization element is represented in the auditory cortex we examined neural responses to logarithmic FM sweep stimuli in the primary auditory cortex (AI) of two awake owl monkeys. Using an implanted array of microelectrodes we quantitatively characterized neuronal responses to FM sweeps and to random tone-pip stimuli. Tone-pip responses were used to construct spectrotemporal receptive fields (STRFs). Classification of FM sweep responses revealed few neurons with high direction and speed selectivity. Most neurons responded to sweeps in both directions and over a broad range of sweep speeds. Characteristic frequency estimates from FM responses were highly correlated with estimates from STRFs, although spectral receptive field bandwidth was consistently underestimated by FM stimuli. Predictions of FM direction selectivity and best speed from STRFs were significantly correlated with observed FM responses, although some systematic discrepancies existed. Last, the population distributions of FM responses in the awake owl monkey were similar to, although of longer temporal duration than, those in the anesthetized squirrel monkeys.


Sign in / Sign up

Export Citation Format

Share Document