neural excitability
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 56)

H-INDEX

21
(FIVE YEARS 3)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daniel S Kluger ◽  
Elio Balestrieri ◽  
Niko A Busch ◽  
Joachim Gross

Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behaviour. We acquired respiration and human magnetoencephalography (MEG) data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8 - 13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected vs undetected targets underscored the behavioural benefits of heightened excitability. Notably, respiration-locked excitability changes were maximised at a respiration phase lag of around -30° and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.


2021 ◽  
Author(s):  
Adriano Henrique de Matos Moffa ◽  
Stevan Nikolin ◽  
Donel Martin ◽  
Colleen Loo ◽  
Tjeerd W. Boonstra

Background: Transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) is a novel method for assessing cortical properties outside the motor region. Theta burst stimulation (TBS), a form of repetitive TMS, can non-invasively modulate cortical excitability and has been increasingly used to treat psychiatric disorders by targetting the dorsolateral prefrontal cortex (DLPFC). The TMS-evoked potentials (TEPs) analysis has been used to evaluate cortical excitability changes after TBS. However, it remains unclear whether TEPs can detect the neuromodulatory effects of TBS. Objectives: To confirm the reliability of TEP components within and between sessions and to measure changes in neural excitability induced by intermittent (iTBS) and continuous TBS (cTBS) applied to the left DLPFC. Methods: Test-retest reliability of TEPs and TBS-induced changes in cortical excitability were assessed in twenty-four healthy participants by stimulating the DLPFC in five separate sessions, once with sham and twice with iTBS and cTBS. EEG responses were recorded of 100 single TMS pulses before and after TBS, and the reproducibility measures were quantified with the concordance correlation coefficient (CCC). Results: The N100 and P200 components presented substantial reliability within the baseline block (CCCs>0.8) and moderate concordance between sessions (CCCmax≈0.7). Both N40 and P60 TEP amplitudes showed little concordance between sessions. Changes in TEP amplitudes after iTBS were marginally reliable for N100 (CCCmax=0.52), P200 (CCCmax=0.47) and P60 (CCCmax=0.40), presenting only fair levels of concordance at specific time points. Conclusions: The present findings show that only the N100 and P200 components had good concordance between sessions. The reliability of earlier components may have been affected by TMS-evoked artefacts. The poor reliability to detect changes in neural excitability induced by TBS indicates that TEPs do not provide a precise estimate of the changes in excitability in the DLPFC or, alternatively, that TBS did not induce consistent changes in neural excitability.


Author(s):  
Ben M. Maoz ◽  
Maria Asplund ◽  
Nicola Maggio ◽  
Andreas Vlachos

AbstractBlood coagulation factors can enter the brain under pathological conditions that affect the blood–brain interface. Besides their contribution to pathological brain states, such as neural hyperexcitability, neurodegeneration, and scar formation, coagulation factors have been linked to several physiological brain functions. It is for example well established that the coagulation factor thrombin modulates synaptic plasticity; it affects neural excitability and induces epileptic seizures via activation of protease-activated receptors in the brain. However, major limitations of current experimental and clinical approaches have prevented us from obtaining a profound mechanistic understanding of “neuro-coagulation” in health and disease. Here, we present how novel human relevant models, i.e., Organ-on-Chips equipped with advanced sensors, can help overcoming some of the limitations in the field, thus providing a perspective toward a better understanding of neuro-coagulation in brain homeostasis.


NeuroImage ◽  
2021 ◽  
pp. 118705
Author(s):  
Michael S. Jacob ◽  
Brian J. Roach ◽  
Kaia Sargent ◽  
Daniel H. Mathalon ◽  
Judith M. Ford

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tilman Stephani ◽  
Alice Hodapp ◽  
Mina Jamshidi Idaji ◽  
Arno Villringer ◽  
Vadim V Nikulin

Perception of sensory information is determined by stimulus features (e.g., intensity) and instantaneous neural states (e.g., excitability). Commonly, it is assumed that both are reflected similarly in evoked brain potentials, that is, larger amplitudes are associated with a stronger percept of a stimulus. We tested this assumption in a somatosensory discrimination task in humans, simultaneously assessing (i) single-trial excitatory post-synaptic currents inferred from short-latency somatosensory evoked potentials (SEPs), (ii) pre-stimulus alpha oscillations (8–13 Hz), and (iii) peripheral nerve measures. Fluctuations of neural excitability shaped the perceived stimulus intensity already during the very first cortical response (at ~20 ms) yet demonstrating opposite neural signatures as compared to the effect of presented stimulus intensity. We reconcile this discrepancy via a common framework based on the modulation of electro-chemical membrane gradients linking neural states and responses, which calls for reconsidering conventional interpretations of brain potential magnitudes in stimulus intensity encoding.


2021 ◽  
Vol 22 (19) ◽  
pp. 10236
Author(s):  
Yukihiro Ohno ◽  
Naofumi Kunisawa ◽  
Saki Shimizu

Inwardly rectifying Kir4.1 channels in astrocytes mediate spatial potassium (K+) buffering, a clearance mechanism for excessive extracellular K+, in tripartite synapses. In addition to K+ homeostasis, astrocytic Kir4.1 channels also play an essential role in regulating extracellular glutamate levels via coupling with glutamate transporters. Moreover, Kir4.1 channels act as novel modulators of the expression of brain-derived neurotrophic factor (BDNF) in astrocytes. Specifically, inhibition of astrocytic Kir4.1 channels elevates extracellular K+ and glutamate levels at synapses and facilitates BDNF expression in astrocytes. These changes elevate neural excitability, which may facilitate synaptic plasticity and connectivity. In this article, we summarize the functions and pharmacological features of Kir4.1 channels in astrocytes and highlight the importance of these channels in the treatment of brain diseases. Although further validation in animal models and human patients is required, astrocytic Kir4.1 channel could potentially serve as a novel therapeutic target for the treatment of depressive disorders and epilepsy.


2021 ◽  
Vol 118 (33) ◽  
pp. e2102217118
Author(s):  
Aurélie Fékété ◽  
Norbert Ankri ◽  
Romain Brette ◽  
Dominique Debanne

The position of the axon initial segment (AIS) is thought to play a critical role in neuronal excitability. Previous experimental studies have found that a distal shift in AIS position correlates with a reduction in excitability. Yet theoretical work has suggested the opposite, because of increased electrical isolation. A distal shift in AIS position corresponds to an elevation of axial resistance Ra. We therefore examined how changes in Ra at the axon hillock impact the voltage threshold (Vth) of the somatic action potential in L5 pyramidal neurons. Increasing Ra by mechanically pinching the axon between the soma and the AIS was found to lower Vth by ∼6 mV. Conversely, decreasing Ra by substituting internal ions with higher mobility elevated Vth. All Ra-dependent changes in Vth could be reproduced in a Hodgkin–Huxley compartmental model. We conclude that in L5 pyramidal neurons, excitability increases with axial resistance and therefore with a distal shift of the AIS.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009235
Author(s):  
Yihao Yang ◽  
Howard Gritton ◽  
Martin Sarter ◽  
Sara J. Aton ◽  
Victoria Booth ◽  
...  

Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K+ current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information.


Sign in / Sign up

Export Citation Format

Share Document