Implementation of Naïve Bayes Classification Method for Predicting Purchase

Author(s):  
Fitriana Harahap ◽  
Ahir Yugo Nugroho Harahap ◽  
Evri Ekadiansyah ◽  
Rita Novita Sari ◽  
Robiatul Adawiyah ◽  
...  
Author(s):  
Alieja Muhammad Putrada ◽  
Maman Abdurohman ◽  
Aji Gautama Putrada

This paper proposes fire alarm system by implementing Naïve Bayes Method for increasing smoke classifier accuracy on Internet of Things (IoT) environment. Fire disasters in the building of houses are a serious threat to the occupants of the house that have a hazard to the safety factor as well as causing material and non-material damages. In an effort to prevent the occurrence of fire disaster, fire alarm system that can serve as an early warning system are required. In this paper, fire alarm system that implementing Naïve Bayes classification has been impelemented. Naïve Bayes classification method is chosen because it has the modeling and good accuracy results in data training set. The system works by using sensor data that is processed and analyzed by applying Naïve Bayes classification to generate prediction value of fire threat level along with smoke source. The smoke source was divided into five types of smoke intended for the classification process. Some experiments have been done for concept proving. The results show the use of Naïve Bayes classification method on classification process has an accuracy rate range of 88% to 91%. This result could be acceptable for classification accuracy.


2016 ◽  
Vol 97 ◽  
pp. 141-149 ◽  
Author(s):  
Hui Zhang ◽  
Zhi-Xing Cao ◽  
Meng Li ◽  
Yu-Zhi Li ◽  
Cheng Peng

2018 ◽  
Vol 14 (1) ◽  
pp. 155014771875603 ◽  
Author(s):  
Yao-Hua Ho ◽  
Yu-Te Huang ◽  
Hao-Hua Chu ◽  
Ling-Jyh Chen

Environmental sensors are important for collecting data to understand environmental changes and analyze environmental issues. In order to effectively monitor environmental changes, high-density sensor deployment and evenly distributed spatial distance between sensors become the requirements and desired properties for such applications. In many applications, sensors are deployed in locations that are difficult and dangerous to reach (e.g. mountaintop or skyscraper roof). To collect data from those sensors, unmanned aerial vehicles are used to act as data mules to overcome the problem of collecting data in challenging environments. In this article, we extend the adaptive return-to-home sensing algorithm with a parameter-tuning algorithm that combines naive Bayes classification and binary search to adapt adaptive return-to-home sensing parameters effectively on the fly. The proposed approach is able to (1) optimize number of sensing attempts, (2) reduce oscillation of the distance for consecutive attempts, and (3) reserve enough power for drone to return-to-home. Our results show that the naive Bayes classification–enhanced adaptive return-to-home sensing scheme is able to avoid oscillation in sensing and guarantees return-to-home feature while behaving more cost-effective in parameter tuning than the other machine learning–based approaches.


Sign in / Sign up

Export Citation Format

Share Document