Spontaneous symmetry breaking and defect formation in a quenched ferromagnetic spinor Bose-Einstein condensate

Author(s):  
Dan M. Stamper-Kurn ◽  
Lorraine E. Sadler ◽  
James M. Higbie ◽  
Mukund Vengalattore ◽  
Sabrina R. Leslie
Nature ◽  
2006 ◽  
Vol 443 (7109) ◽  
pp. 312-315 ◽  
Author(s):  
L. E. Sadler ◽  
J. M. Higbie ◽  
S. R. Leslie ◽  
M. Vengalattore ◽  
D. M. Stamper-Kurn

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny Sedov ◽  
Sergey Arakelian ◽  
Alexey Kavokin

AbstractWe predict the spontaneous symmetry breaking in a spinor Bose–Einstein condensate of exciton-polaritons (polaritons) caused by the coupling of its spin and orbital degrees of freedom. We study a polariton condensate trapped in a ring-shaped effective potential with a broken rotational symmetry. We propose a realistic scheme of generating controllable spinor azimuthal persistent currents of polaritons in the trap under the continuous wave optical pump. We propose a new type of half-quantum circulating states in a spinor system characterized by azimuthal currents in both circular polarizations and a vortex in only one of the polarizations. The spontaneous symmetry breaking in the spinor polariton condensate that consists in the switching from co-winding to opposite-winding currents in opposite spin states is revealed. It is characterized by the change of the average orbital angular momentum of the condensate from zero to non-zero values. The radial displacement of the pump spot and the polarization of the pump act as the control parameters. The considered system exhibits a fundamental similarity to a superconducting flux qubit, which makes it highly promising for applications in quantum computing.


2018 ◽  
Vol 28 (4) ◽  
pp. 301
Author(s):  
Cuong Duy Nguyen ◽  
Khoa Xuan Dinh ◽  
Van Long Cao ◽  
Trippenbach M. ◽  
Thuan Dinh Bui ◽  
...  

We consider an extended model of the model considered before with double-square potential, namely one-dimensional (1D) nonlinear Schrödinger equation (NLSE) with self-focusing nonlinearity and a 1D double-gauss potential. Spontaneous symmetry breaking has been presented in terms of the control parameter which is propagation constant in the case of optics and chemical potential in the of Bose-Einstein Condensate (BEC), correspondingly. The numerical simulations predict a bifurcation breaking the symmetry of 1D trapped in the double-gauss potential of the supercritical type as in the case of double-square potential. Furthermore we have constructed bifurcation diagrams considering the stability of solitons with three methods: the method using Vakhitov–Kolokolov (V-K) Stability Criterion, Pseudospectral Method and Method for Linear-Stability Eigenvalues. It will be shown that for our model the results obtained are the same for these three methods but the third one is the fastest.


2018 ◽  
Vol 96 (6) ◽  
pp. 622-626 ◽  
Author(s):  
Yuan Sheng Wang ◽  
Ping Long ◽  
Bo Zhang ◽  
Hong Zhang

We investigate the properties of a three-dimensional (3D) dipolar Bose–Einstein condensate (BEC) in a double-well potential (DWP). Symmetry breaking and tunneling dynamics phenomena are demonstrated for 164Dy atoms in the 3D DWP using an effective two-mode model. The results show that the symmetry properties of the dynamics are affected markedly by the long-range nature and anisotropy of the dipolar interaction and the isotropic contact interaction.


Sign in / Sign up

Export Citation Format

Share Document