scholarly journals Spontaneous symmetry breaking in persistent currents of spinor polaritons

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny Sedov ◽  
Sergey Arakelian ◽  
Alexey Kavokin

AbstractWe predict the spontaneous symmetry breaking in a spinor Bose–Einstein condensate of exciton-polaritons (polaritons) caused by the coupling of its spin and orbital degrees of freedom. We study a polariton condensate trapped in a ring-shaped effective potential with a broken rotational symmetry. We propose a realistic scheme of generating controllable spinor azimuthal persistent currents of polaritons in the trap under the continuous wave optical pump. We propose a new type of half-quantum circulating states in a spinor system characterized by azimuthal currents in both circular polarizations and a vortex in only one of the polarizations. The spontaneous symmetry breaking in the spinor polariton condensate that consists in the switching from co-winding to opposite-winding currents in opposite spin states is revealed. It is characterized by the change of the average orbital angular momentum of the condensate from zero to non-zero values. The radial displacement of the pump spot and the polarization of the pump act as the control parameters. The considered system exhibits a fundamental similarity to a superconducting flux qubit, which makes it highly promising for applications in quantum computing.

Nature ◽  
2006 ◽  
Vol 443 (7109) ◽  
pp. 312-315 ◽  
Author(s):  
L. E. Sadler ◽  
J. M. Higbie ◽  
S. R. Leslie ◽  
M. Vengalattore ◽  
D. M. Stamper-Kurn

2018 ◽  
Vol 28 (4) ◽  
pp. 301
Author(s):  
Cuong Duy Nguyen ◽  
Khoa Xuan Dinh ◽  
Van Long Cao ◽  
Trippenbach M. ◽  
Thuan Dinh Bui ◽  
...  

We consider an extended model of the model considered before with double-square potential, namely one-dimensional (1D) nonlinear Schrödinger equation (NLSE) with self-focusing nonlinearity and a 1D double-gauss potential. Spontaneous symmetry breaking has been presented in terms of the control parameter which is propagation constant in the case of optics and chemical potential in the of Bose-Einstein Condensate (BEC), correspondingly. The numerical simulations predict a bifurcation breaking the symmetry of 1D trapped in the double-gauss potential of the supercritical type as in the case of double-square potential. Furthermore we have constructed bifurcation diagrams considering the stability of solitons with three methods: the method using Vakhitov–Kolokolov (V-K) Stability Criterion, Pseudospectral Method and Method for Linear-Stability Eigenvalues. It will be shown that for our model the results obtained are the same for these three methods but the third one is the fastest.


2020 ◽  
Vol 22 (44) ◽  
pp. 25669-25674
Author(s):  
Sumit Suresh Kale ◽  
Yijue Ding ◽  
Yong P. Chen ◽  
Bretislav Friedrich ◽  
Sabre Kais

Mechanisms including two types of Raman laser coupling (Ω1 & Ω2) and rf field coupling (Ωrf) are applied to drive transitions between different hyperfine spin states. We investigated the entanglement between the spin and momentum degrees of freedom.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1312 ◽  
Author(s):  
Artem Oliinyk ◽  
Igor Yatsuta ◽  
Boris Malomed ◽  
Alexander Yakimenko

We demonstrate that the evolution of superflows in interacting persistent currents of ultracold gases is strongly affected by symmetry breaking of the quantum vortex dynamics. We study counter-propagating superflows in a system of two parallel rings in regimes of weak (a Josephson junction with tunneling through the barrier) and strong (rings merging across a reduced barrier) interactions. For the weakly interacting toroidal Bose–Einstein condensates, formation of rotational fluxons (Josephson vortices) is associated with spontaneous breaking of the rotational symmetry of the tunneling superflows. The influence of a controllable symmetry breaking on the final state of the merging counter-propagating superflows is investigated in the framework of a weakly dissipative mean-field model. It is demonstrated that the population imbalance between the merging flows and the breaking of the underlying rotational symmetry can drive the double-ring system to final states with different angular momenta.


Sign in / Sign up

Export Citation Format

Share Document