Low-frequency Underwater Acoustic Signal Denoising Method in the Shallow Sea with a Low Signal-to-noise Ratio

Author(s):  
Yaowen Wu ◽  
Chuanxi Xing ◽  
Dongyu Zhang ◽  
Lixiang Xie
2013 ◽  
Vol 457-458 ◽  
pp. 1156-1162 ◽  
Author(s):  
Jian Jun Zhong ◽  
Sheng Nan Fang ◽  
Chang Ying Linghu

During the tests of the vehicle automatic transmission bench, the acceleration signal is needed to be denoised. As a means of denoising, wavelet threshold denoising method has small amount of calculation and better filtering effect. However, adopting different wavelet basis functions as well as different threshold rules might have a direct effect on the signal denoising. In this paper, we firstly construct the simulated noisy signal approximated to the observed signal, and then do the signal denoising experiment of parameter matching. Secondly, seven Symlets wavelet basis functions and four classical wavelet threshold rules are selected and tested one by one. Signal to noise ratio (SNR) and root mean square error (RMSE) of the denoised signal, the evaluation indicators, are calculated and carried out in accordance with the merits of denoising effect. Thus the optimal combination of the fixed threshold rule and sym8 wavelet basis function is obtained. Finally, this combination is used in the bench test to denoise the angular acceleration signal, and good filtering effect is achieved.


2014 ◽  
Vol 556-562 ◽  
pp. 6328-6331
Author(s):  
Su Zhen Shi ◽  
Yi Chen Zhao ◽  
Li Biao Yang ◽  
Yao Tang ◽  
Juan Li

The LIFT technology has applied in process of denoising to ensure the imaging precision of minor faults and structure in 3D coalfield seismic processing. The paper focused on the denoising process in two study areas where the LIFT technology is used. The separation of signal and noise is done firstly. Then denoising would be done in the noise data. The Data of weak effective signal that is from the noise data could be blended with the original effective signal to reconstruct the denoising data, so the result which has high signal-to-noise ratio and preserved amplitude is acquired. Thus the fact shows that LIFT is an effective denoising method for 3D seismic in coalfield and could be used widely in other work area.


2012 ◽  
Vol 108 (10) ◽  
pp. 2837-2845 ◽  
Author(s):  
Go Ashida ◽  
Kazuo Funabiki ◽  
Paula T. Kuokkanen ◽  
Richard Kempter ◽  
Catherine E. Carr

Owls use interaural time differences (ITDs) to locate a sound source. They compute ITD in a specialized neural circuit that consists of axonal delay lines from the cochlear nucleus magnocellularis (NM) and coincidence detectors in the nucleus laminaris (NL). Recent physiological recordings have shown that tonal stimuli induce oscillatory membrane potentials in NL neurons (Funabiki K, Ashida G, Konishi M. J Neurosci 31: 15245–15256, 2011). The amplitude of these oscillations varies with ITD and is strongly correlated to the firing rate. The oscillation, termed the sound analog potential, has the same frequency as the stimulus tone and is presumed to originate from phase-locked synaptic inputs from NM fibers. To investigate how these oscillatory membrane potentials are generated, we applied recently developed signal-to-noise ratio (SNR) analysis techniques (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274–2290, 2010) to the intracellular waveforms obtained in vivo. Our theoretical prediction of the band-limited SNRs agreed with experimental data for mid- to high-frequency (>2 kHz) NL neurons. For low-frequency (≤2 kHz) NL neurons, however, measured SNRs were lower than theoretical predictions. These results suggest that the number of independent NM fibers converging onto each NL neuron and/or the population-averaged degree of phase-locking of the NM fibers could be significantly smaller in the low-frequency NL region than estimated for higher best-frequency NL.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5704
Author(s):  
Zhenhu Jin ◽  
Yupeng Wang ◽  
Kosuke Fujiwara ◽  
Mikihiko Oogane ◽  
Yasuo Ando

Thanks to their high magnetoresistance and integration capability, magnetic tunnel junction-based magnetoresistive sensors are widely utilized to detect weak, low-frequency magnetic fields in a variety of applications. The low detectivity of MTJs is necessary to obtain a high signal-to-noise ratio when detecting small variations in magnetic fields. We fabricated serial MTJ-based sensors with various junction area and free-layer electrode aspect ratios. Our investigation showed that their sensitivity and noise power are affected by the MTJ geometry due to the variation in the magnetic shape anisotropy. Their MR curves demonstrated a decrease in sensitivity with an increase in the aspect ratio of the free-layer electrode, and their noise properties showed that MTJs with larger junction areas exhibit lower noise spectral density in the low-frequency region. All of the sensors were able detect a small AC magnetic field (Hrms = 0.3 Oe at 23 Hz). Among the MTJ sensors we examined, the sensor with a square-free layer and large junction area exhibited a high signal-to-noise ratio (4792 ± 646). These results suggest that MTJ geometrical characteristics play a critical role in enhancing the detectivity of MTJ-based sensors.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Guohui Li ◽  
Wanni Chang ◽  
Hong Yang

The prediction of underwater acoustic signal is the basis of underwater acoustic signal processing, which can be applied to underwater target signal noise reduction, detection, and feature extraction. Therefore, it is of great significance to improve the prediction accuracy of underwater acoustic signal. Aiming at the difficulty in underwater acoustic signal sequence prediction, a new hybrid prediction model for underwater acoustic signal is proposed in this paper, which combines the advantages of variational mode decomposition (VMD), artificial intelligence method, and optimization algorithm. In order to reduce the complexity of underwater acoustic signal sequence and improve operation efficiency, the original signal is decomposed by VMD into intrinsic mode components (IMFs) according to the characteristics of the signal, and dispersion entropy (DE) is used to analyze the complexity of IMF. The subsequences (VMD-DE) are obtained by adding the IMF with similar complexity. Then, extreme learning machine (ELM) is used to predict the low-frequency subsequence obtained by VMD-DE. Support vector regression (SVR) is used to predict the high-frequency subsequence. In addition, an artificial bee colony (ABC) algorithm is used to optimize model performance by adjusting the parameters of SVR. The experimental results show that the proposed new hybrid model can provide enhanced accuracy with the reduction of prediction error compared with other existing prediction methods.


Sign in / Sign up

Export Citation Format

Share Document