Performance bounds for hybrid flow lines: Fundamental behavior, practical features and application to linear cluster tools

Author(s):  
Kyungsu Park ◽  
James R. Morrison
2014 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Peyman Sabzi ◽  
Saheb Noroozi

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage


Author(s):  
Kai Han ◽  
Shuang Cui ◽  
Tianshuai Zhu ◽  
Enpei Zhang ◽  
Benwei Wu ◽  
...  

Data summarization, i.e., selecting representative subsets of manageable size out of massive data, is often modeled as a submodular optimization problem. Although there exist extensive algorithms for submodular optimization, many of them incur large computational overheads and hence are not suitable for mining big data. In this work, we consider the fundamental problem of (non-monotone) submodular function maximization with a knapsack constraint, and propose simple yet effective and efficient algorithms for it. Specifically, we propose a deterministic algorithm with approximation ratio 6 and a randomized algorithm with approximation ratio 4, and show that both of them can be accelerated to achieve nearly linear running time at the cost of weakening the approximation ratio by an additive factor of ε. We then consider a more restrictive setting without full access to the whole dataset, and propose streaming algorithms with approximation ratios of 8+ε and 6+ε that make one pass and two passes over the data stream, respectively. As a by-product, we also propose a two-pass streaming algorithm with an approximation ratio of 2+ε when the considered submodular function is monotone. To the best of our knowledge, our algorithms achieve the best performance bounds compared to the state-of-the-art approximation algorithms with efficient implementation for the same problem. Finally, we evaluate our algorithms in two concrete submodular data summarization applications for revenue maximization in social networks and image summarization, and the empirical results show that our algorithms outperform the existing ones in terms of both effectiveness and efficiency.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1029
Author(s):  
Ying-Mei Tu

Since last decade, the cluster tool has been mainstream in modern semiconductor manufacturing factories. In general, the cluster tool occupies 60% to 70% of production machines for advanced technology factories. The most characteristic feature of this kind of equipment is to integrate the relevant processes into one single machine to reduce wafer transportation time and prevent wafer contaminations as well. Nevertheless, cluster tools also increase the difficulty of production planning significantly, particularly for shop floor control due to complicated machine configurations. The main objective of this study is to propose a short-term scheduling model. The noteworthy goal of scheduling is to maximize the throughput within time constraints. There are two modules included in this scheduling model—arrival time estimation and short-term scheduling. The concept of the dynamic cycle time of the product’s step is applied to estimate the arrival time of the work in process (WIP) in front of machine. Furthermore, in order to avoid violating the time constraint of the WIP, an algorithm to calculate the latest time of the WIP to process on the machine is developed. Based on the latest process time of the WIP and the combination efficiency table, the production schedule of the cluster tools can be re-arranged to fulfill the production goal. The scheduling process will be renewed every three hours to make sure of the effectiveness and good performance of the schedule.


Sign in / Sign up

Export Citation Format

Share Document