Welding parameter optimization based on Gaussian process regression Bayesian optimization algorithm

Author(s):  
Dillon Sterling ◽  
Tyler Sterling ◽  
YuMing Zhang ◽  
Heping Chen
2019 ◽  
Vol 52 (7-8) ◽  
pp. 888-895
Author(s):  
Heping Chen ◽  
Seth Bowels ◽  
Biao Zhang ◽  
Thomas Fuhlbrigge

Proportional–integral–derivative control system has been widely used in industrial applications. For complex systems, tuning controller parameters to satisfy the process requirements is very challenging. Different methods have been proposed to solve the problem. However these methods suffer several problems, such as dealing with system complexity, minimizing tuning effort and balancing different performance indices including rise time, settling time, steady-state error and overshoot. In this paper, we develop an automatic controller parameter optimization method based on Gaussian process regression Bayesian optimization algorithm. A non-parametric model is constructed using Gaussian process regression. By combining Gaussian process regression with Bayesian optimization algorithm, potential candidate can be predicted and applied to guide the optimization process. Both experiments and simulation were performed to demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 231 ◽  
pp. 111453
Author(s):  
Qianjin Lin ◽  
Chun Zou ◽  
Shibo Liu ◽  
Yunpeng Wang ◽  
Lixin Lu ◽  
...  

Kerntechnik ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. 109-121 ◽  
Author(s):  
B. Zhang ◽  
M. Peng ◽  
S. Cheng ◽  
L. Sun

Abstract Small modular reactors (SMRs) are suitable for deployment in isolated underdeveloped areas to support highly localized microgrids. In order to achieve almost autonomous operation for reducing the cost of operating personnel, an autonomous control system with decision-making capability is needed. In this paper, a decision-making method based on Bayesian optimization algorithm (BOA) is proposed to explore the optimal operation scheme under fault conditions. BOA is used to adjust exploration strategy of operation scheme according to observations (operation schemes previously explored). To measure the feasibility of each operation scheme, an objective function that considers security and economy is established. BOA attempts to obtain the optimal operation scheme with maximum of the objective function in as few iterations as possible. To verify the proposed method, all main pump powered off fault is simulated by RELAP5 code. The optimal operation scheme of the fault is applied, the transient result shows that all key parameters are within safe limits and SMR is maintained at relatively high power, which means that BOA has the decision-making capability to get an optimal operation scheme on fault conditions.


Author(s):  
Laurens Bliek ◽  
Sicco Verwer ◽  
Mathijs de Weerdt

Abstract When a black-box optimization objective can only be evaluated with costly or noisy measurements, most standard optimization algorithms are unsuited to find the optimal solution. Specialized algorithms that deal with exactly this situation make use of surrogate models. These models are usually continuous and smooth, which is beneficial for continuous optimization problems, but not necessarily for combinatorial problems. However, by choosing the basis functions of the surrogate model in a certain way, we show that it can be guaranteed that the optimal solution of the surrogate model is integer. This approach outperforms random search, simulated annealing and a Bayesian optimization algorithm on the problem of finding robust routes for a noise-perturbed traveling salesman benchmark problem, with similar performance as another Bayesian optimization algorithm, and outperforms all compared algorithms on a convex binary optimization problem with a large number of variables.


2013 ◽  
Vol 54 ◽  
pp. 385-405 ◽  
Author(s):  
Bui Van Ha ◽  
Paola Pirinoli ◽  
Riccardo E. Zich ◽  
Marco Mussetta ◽  
Francesco Grimaccia

Sign in / Sign up

Export Citation Format

Share Document