Model Reference Input Shaping Control of a Nonlinear Rotary Crane with Time-Varying Rope Length

Author(s):  
Ho Duc Tho ◽  
Naoki Uchiyama ◽  
Kazuhiko Terashima
Robotica ◽  
1996 ◽  
Vol 14 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Jung-Keun Cho ◽  
Youn-Sik Park

SUMMARYIn the authors' previous paper,10 an input shaping method was presented to reduce motion-induced vibrations effectively for various classes of flexible systems. In this paper, the effectiveness of the shaping method is experimentally demonstrated with a two-link flexible manipulator systemThe manipulator for experiments includes two revolute joints and two flexible links, and moves on a vertical plane under gravity. An analytic model is developed considering the flexibility of the system and its joint stiffness in order to derive an appropriate estimation of dynamic modal properties. The input shaping method used in this work utilizes time-varying modal properties obtained from the model instead of the conventional input shaping method which employs time-invariant modal properties. A point-to-point motion is tested in order to show the effectivess of the proposed shaping method in vibration reduction during and after a given motion. The given reference trajectories are shaped to suppress the motion induced vibration. The test results demonstrate that the link vibration can be greatly suppressed during and after a motion, and the residual vibration reduction was observed more than 90% by employing this time-varying impulse shaping technique.


2011 ◽  
Vol 121-126 ◽  
pp. 2676-2680
Author(s):  
Ming Xiao Dong ◽  
Rui Chuan Li ◽  
Qin Zu Xu

A poorly designed control system can lead to excessive residual vibration and long setting time. This paper investigates the effect of input shaping on control efficiency. To perform this investigation, we design a PD controller combined with input shaping for an inertia plant. We then subject it to four standard types of inputs. The responses of the control systems are described by analytical expressions. The performances of PD control and PD combined with input-shaping control are thoroughly analyzed and compared. Simulation results show that PD feedback control enhanced with input shaping minimizes overshoot and setting time.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
La Duc Viet ◽  
Youngjin Park

While the crane control problem is often approached by applying a certain active control command to some parts of the crane, this paper proposes a cable-passive damper system to reduce the vibration of a four-cable suspended crane spreader. The residual sway and skew motions of a crane spreader always produce the angle deflections between the crane cables and the crane spreader. The idea in this paper is to convert those deflections into energy dissipated by the viscous dampers, which connect the cables and the spreader. The proposed damper system is effective in reducing spreader sway and skew motions. Moreover, the optimal damping coefficient can be found analytically by minimizing the time integral of system energy. The numerical simulations show that the proposed passive system can assist the input shaping control of the trolley motion in reducing both sway and skew responses.


2016 ◽  
Vol 32 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Quoc Chi Nguyen ◽  
Ha Quang Thinh Ngo

In this paper, three control algorithms based on input shaping method are developed to suppress the residual vibration of a flexible beam. The flexible beam is modeled as an under-damped system. Three input shapers, ZV, ZVD, and ZVDD, are used to control the flexible beam. The three control algorithms are implemented by using the Mechatrolink-III motion system. The experiments are performed to verify the effectiveness of the three control algorithms.


Sign in / Sign up

Export Citation Format

Share Document