Single crystal and amorphous Ge for use in stand-alone and thin film tandem solar cells

COMMAD 2012 ◽  
2012 ◽  
Author(s):  
J. Sharp ◽  
W. J. Lee ◽  
G. A. Umana-Membreno ◽  
J. Dell ◽  
L. Faraone
2021 ◽  
Vol 1165 ◽  
pp. 113-130
Author(s):  
Romyani Goswami

In photovoltaic system the major challenge is the cost reduction of the solar cell module to compete with those of conventional energy sources. Evolution of solar photovoltaic comprises of several generations through the last sixty years. The first generation solar cells were based on single crystal silicon and bulk polycrystalline Si wafers. The single crystal silicon solar cell has high material cost and the fabrication also requires very high energy. The second generation solar cells were based on thin film fabrication technology. Due to low temperature manufacturing process and less material requirement, remarkable cost reduction was achieved in these solar cells. Among all the thin film technologies amorphous silicon thin film solar cell is in most advanced stage of development and is commercially available. However, an inherent problem of light induced degradation in amorphous silicon hinders the higher efficiency in this kind of cell. The third generation silicon solar cells are based on nano-crystalline and nano-porous materials. Hydrogenated nanocrystalline silicon (nc-Si:H) is becoming a promising material as an absorber layer of solar cell due to its high stability with high Voc. It is also suggested that the cause of high stability and less degradation of certain nc-Si:H films may be due to the improvement of medium range order (MRO) of the films. During the last ten years, organic, polymer, dye sensitized and perovskites materials are also attract much attention of the photovoltaic researchers as the low budget next generation PV material worldwide. Although most important challenge for those organic solar cells in practical applications is the stability issue. In this work nc-Si:H films are successfully deposited at a high deposition rate using a high pressure and a high power by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD) technique. The transmission electron microscopy (TEM) studies show the formations of distinct nano-sized grains in the amorphous tissue with sharp crystalline orientations. Light induced degradation of photoconductivity of nc-Si:H materials have been studied. Single junction solar cells and solar module were successfully fabricated using nanocrystalline silicon as absorber layer. The optimum cell is 7.1 % efficient initially. Improvement in efficiency can be achieved by optimizing the doped layer/interface and using Ag back contact.


Author(s):  
R.P. Gale ◽  
R.W. McClelland ◽  
B.D. Dingle ◽  
J.V. Gormley ◽  
R.M. Burgess ◽  
...  

2019 ◽  
Vol 3 (9) ◽  
pp. 2246-2259 ◽  
Author(s):  
Bart Vermang ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Thomas Schnabel ◽  
Erik Ahlswede ◽  
...  

This study describes the potential and challenges involved with the use of wide bandgap kesterite absorbers in tandem solar cells.


Author(s):  
Ramez Hosseinian Ahangharnejhad ◽  
Adam B Phillips ◽  
Ilke Celik ◽  
Zhaoning Song ◽  
Yanfa Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document