P-Type Doping in Heteroepitaxial CdTe and Lift-Off Technique for Making Thin Film Single Crystal CdTe Solar Cells

Author(s):  
A. N. Tiwari ◽  
S. Blunier ◽  
K. Kessler ◽  
H. Zogg
2010 ◽  
Vol 1268 ◽  
Author(s):  
Mao-Hua Du

AbstractForming a chemically stable low-resistance back contact for CdTe thin film solar cells is critically important to the cell performance. This paper reports theoretical study of the effects of the back contact material, Sb2Te3, on the performance of the CdTe solar cells. First-principles calculations show that Sb impurities in p-type CdTe are donors and can diffuse with low diffusion barrier. There properties are clearly detrimental to the solar cell performance. The Sb segregation into the grain boundaries may be required to explain the good efficiencies for the CdTe solar cells with Sb2Te3 back contacts.


2001 ◽  
Vol 668 ◽  
Author(s):  
Jutta Beier ◽  
Marc Köntges ◽  
Peter Nollet ◽  
Stefaan Degrave ◽  
Marc Burgelman

ABSTRACTIn previous work [1,2], we modeled the cross-over of the I-V curves of thin film CdS/CdTe solar cells in terms of an electron (minority carrier) current in the vicinity of the back contact. In this work, we focus on the necessary extension of this analytical model based on a series of measurement results. Especially the wavelength and voltage dependence of the current at forward bias is illustrated in these measurements. The various possible causes for this kind of behavior are discussed and modeled. The extensions to the previous model, needed to describe the voltage and wavelength dependent behavior of I-V curves of real CdTe/CdS solar cells, are proposed.


2005 ◽  
Vol 865 ◽  
Author(s):  
Xiangxin Liu ◽  
Alvin D. Compaan ◽  
Jeff Terry

AbstractThe highest performance CdS/CdTe thin film solar cells are generally completed with a Cucontaining back contact. The copper appears to be critical for achieving heavy p-type doping of the CdTe at the contact to permit the formation of a low resistance contact. In previous extended x-ray absorption fine structure (EXAFS) work we have inferred that most of the Cu in CdTe films resides as Cu2O at the boundaries of CdTe grains in films that have received a chloride treatment in the presence of oxygen, a critical step needed to improve the performance of all CdTe thin-film cells. This has suggested a mechanism for grain boundary passivation in thinfilm CdTe solar cells. We believe most of the diffused Cu decorates grain boundaries as oxides, consistent with the low doping densities typically observed in CdTe solar cells. The significance for grain boundary passivation will be discussed. We also find evidence that the grain-boundary Cu2O in CdCl2 treated CdTe films is unstable and tends to transform to CuO under some stress conditions.


2021 ◽  
Vol 118 (18) ◽  
pp. 181101
Author(s):  
Jia Ding ◽  
Cheng-Ying Tsai ◽  
Zheng Ju ◽  
Yong-Hang Zhang

2010 ◽  
Vol 94 (12) ◽  
pp. 2332-2336 ◽  
Author(s):  
Sun-Young Park ◽  
Hye-Ri Kim ◽  
Yong-Jin Kang ◽  
Dong-Ho Kim ◽  
Jae-Wook Kang

Sign in / Sign up

Export Citation Format

Share Document