Generalized multivariable small-signal model of three-phase grid-connected inverter in DQ-domain

Author(s):  
Tuomas Messo ◽  
Aapo Aapro ◽  
Teuvo Suntio
2019 ◽  
Vol 66 (8) ◽  
pp. 6493-6504 ◽  
Author(s):  
Zhikang Shuai ◽  
Yang Li ◽  
Weimin Wu ◽  
Chunming Tu ◽  
An Luo ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2101
Author(s):  
Hyun-jun Choi ◽  
Won-bin Lee ◽  
Jee-hoon Jung

In a low voltage DC (LVDC) distribution system, isolated bi-directional DC-DC converters are key devices to control power flows. A three-phase dual-active-bridge (3P-DAB) converter is one of the suitable candidates due to inherent soft-switching capability, low conduction loss, and high-power density. However, the 3P-DAB converter requires a well-designed controller due to the influence of the equivalent series resistance (ESR) of an output filter capacitor, degrading the performance of the 3P-DAB converter in terms of high-frequency noise. Unfortunately, there is little research that considers the practical design methodology of the 3P-DAB converter’s controller because of its complexity. In this paper, the influence of the ESR on the 3P-DAB converter is presented. Additionally, the generalized average small-signal model (SSM) of the 3P-DAB converter including the ESR of the capacitive output filter is presented. Based on this model, an extended small-signal model and appropriate controller design guide, and performance comparison are presented based on the frequency domain analysis. Finally, experimental results verify the validity of the proposed controller using a 25 kW prototype 3P-DAB converter.


Sign in / Sign up

Export Citation Format

Share Document