Preliminary design and experimental tests of a real-time stereoscopic foveated vision system

Author(s):  
Eduardo Rodriguez-Orozco ◽  
Eusebio Bugarin ◽  
Juan Antonio Rojas-Quintero ◽  
Ana Y. Aguilar-Bustos
Author(s):  
Giuseppe Placidi ◽  
Danilo Avola ◽  
Luigi Cinque ◽  
Matteo Polsinelli ◽  
Eleni Theodoridou ◽  
...  

AbstractVirtual Glove (VG) is a low-cost computer vision system that utilizes two orthogonal LEAP motion sensors to provide detailed 4D hand tracking in real–time. VG can find many applications in the field of human-system interaction, such as remote control of machines or tele-rehabilitation. An innovative and efficient data-integration strategy, based on the velocity calculation, for selecting data from one of the LEAPs at each time, is proposed for VG. The position of each joint of the hand model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses two LEAP sensors, two spatial representations are available each moment for each joint: the method consists of the selection of the one with the lower velocity at each time instant. Choosing the smoother trajectory leads to VG stabilization and precision optimization, reduces occlusions (parts of the hand or handling objects obscuring other hand parts) and/or, when both sensors are seeing the same joint, reduces the number of outliers produced by hardware instabilities. The strategy is experimentally evaluated, in terms of reduction of outliers with respect to a previously used data selection strategy on VG, and results are reported and discussed. In the future, an objective test set has to be imagined, designed, and realized, also with the help of an external precise positioning equipment, to allow also quantitative and objective evaluation of the gain in precision and, maybe, of the intrinsic limitations of the proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-time data integration strategies, specific for VG, will be designed and tested on the resulting dataset.


2005 ◽  
Vol 56 (8-9) ◽  
pp. 831-842 ◽  
Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi

2006 ◽  
Vol 89 (6) ◽  
pp. 34-43 ◽  
Author(s):  
Shingo Kagami ◽  
Takashi Komuro ◽  
Yoshihiro Watanabe ◽  
Masatoshi Ishikawa
Keyword(s):  

1996 ◽  
Vol 63 (1) ◽  
pp. 50-65 ◽  
Author(s):  
Hiroyuki Yamamoto ◽  
Yehezkel Yeshurun ◽  
Martin D. Levine

Author(s):  
N. Bosso ◽  
A. Gugliotta ◽  
N. Zampieri

Determination of contact forces exchanged between wheel and rail is one of the most important topics in railway dynamics. Recent studies are oriented to improve the existing contact methods in terms of computational efficiency on one side and on the other side to develop more complex and precise representation of the contact problem. This work shows some new results of the contact code developed at Politecnico di Torino identified as RTCONTACT; this code, which is an improvement of the CONPOL algorithm, is the result of long term activities, early versions were used in conjunction with MBS codes or in Matlab® environment to simulate vehicle behaviour. The code has been improved also using experimental tests performed on a scaled roller-rig. More recently the contact model was improved in order to obtain a higher computational efficiency that is a required for the use inside of a Real Time process. Benefit of a Real Time contact algorithm is the possibility to use complex simulation models in diagnostic or control systems in order to improve their performances. This work shows several comparisons of the RTCONTACT contact code respect commercial codes, standards and benchmark results.


Sign in / Sign up

Export Citation Format

Share Document