IoT-based panel for real time traffic data monitoring in Smart Cities: A case study in the Guadalajara Metropolitan Zone

Author(s):  
Carlos Jose Maria Casillas Mora ◽  
Gilberto Ochoa Ruiz ◽  
Lina Maria Aguilar Lobo
2019 ◽  
Vol 1 (2-3) ◽  
pp. 161-173 ◽  
Author(s):  
Vilhelm Verendel ◽  
Sonia Yeh

Abstract Online real-time traffic data services could effectively deliver traffic information to people all over the world and provide large benefits to the society and research about cities. Yet, city-wide road network traffic data are often hard to come by on a large scale over a longer period of time. We collect, describe, and analyze traffic data for 45 cities from HERE, a major online real-time traffic information provider. We sampled the online platform for city traffic data every 5 min during 1 year, in total more than 5 million samples covering more than 300 thousand road segments. Our aim is to describe some of the practical issues surrounding the data that we experienced in working with this type of data source, as well as to explore the data patterns and see how this data source provides information to study traffic in cities. We focus on data availability to characterize how traffic information is available for different cities; it measures the share of road segments with real-time traffic information at a given time for a given city. We describe the patterns of real-time data availability, and evaluate methods to handle filling in missing speed data for road segments when real-time information was not available. We conduct a validation case study based on Swedish traffic sensor data and point out challenges for future validation. Our findings include (i) a case study of validating the HERE data against ground truth available for roads and lanes in a Swedish city, showing that real-time traffic data tends to follow dips in travel speed but miss instantaneous higher speed measured in some sensors, typically at times when there are fewer vehicles on the road; (ii) using time series clustering, we identify four clusters of cities with different types of measurement patterns; and (iii) a k-nearest neighbor-based method consistently outperforms other methods to fill in missing real-time traffic speeds. We illustrate how to work with this kind of traffic data source that is increasingly available to researchers, travellers, and city planners. Future work is needed to broaden the scope of validation, and to apply these methods to use online data for improving our knowledge of traffic in cities.


2018 ◽  
Vol 114 ◽  
pp. 4-11 ◽  
Author(s):  
Yina Wu ◽  
Mohamed Abdel-Aty ◽  
Jaeyoung Lee

Author(s):  
Seri Oh ◽  
Stephen G. Ritchie ◽  
Cheol Oh

Accurate traffic data acquisition is essential for effective traffic surveillance, which is the backbone of advanced transportation management and information systems (ATMIS). Inductive loop detectors (ILDs) are still widely used for traffic data collection in the United States and many other countries. Three fundamental traffic parameters—speed, volume, and occupancy—are obtainable via single or double (speed-trap) ILDs. Real-time knowledge of such traffic parameters typically is required for use in ATMIS from a single loop detector station, which is the most commonly used. However, vehicle speeds cannot be obtained directly. Hence, the ability to estimate vehicle speeds accurately from single loop detectors is of considerable interest. In addition, operating agencies report that conventional loop detectors are unable to achieve volume count accuracies of more than 90% to 95%. The improved derivation of fundamental real-time traffic parameters, such as speed, volume, occupancy, and vehicle class, from single loop detectors and inductive signatures is demonstrated.


Author(s):  
Angela E. Kitali ◽  
Emmanuel Kidando ◽  
Paige Martz ◽  
Priyanka Alluri ◽  
Thobias Sando ◽  
...  

Multiple-vehicle crashes involving at least two vehicles constitute over 70% of fatal and injury crashes in the U.S. Moreover, multiple-vehicle crashes involving three or more vehicles (3+) are usually more severe compared with the crashes involving only two vehicles. This study focuses on developing 3+ multiple-vehicle crash severity models for a freeway section using real-time traffic data and crash data for the years 2014–2016. The study corridor is a 111-mile section on I-4 in Orlando, Florida. Crash injury severity was classified as a binary outcome (fatal/severe injury and minor/no injury crashes). For the purpose of identifying the reliable relationship between the 3+ severe multiple-vehicle crashes and the identified explanatory variables, a binary probit model with Dirichlet random effect parameter was used. More specifically, Dirichlet random effect model was introduced to account for unobserved heterogeneity in the crash data. The probit model was implemented using a Bayesian framework and the ratios of the Monte Carlo errors were monitored to achieve parameter estimation convergence. The following variables were found significant at the 95% Bayesian credible interval: logarithm of average vehicle speed, logarithm of average equivalent 10-minute hourly volume, alcohol involvement, lighting condition, and number of vehicles involved (3, or >3) in multiple-vehicle crashes. Further analysis involved analyzing the posterior probability distributions of these significant variables. The study findings can be used to associate certain traffic conditions with severe injury crashes involving 3+ multiple vehicles, and can help develop effective crash injury reduction strategies based on real-time traffic data.


Author(s):  
Shabana ◽  
Sallauddin Mohmmad ◽  
Mohammed Ali Shaik ◽  
K Mahender ◽  
Ranganath Kanakam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document