A ROUTING MODEL FOR EMERGENCY VEHICLES USING THE REAL TIME TRAFFIC DATA

Author(s):  
Nikki Rathore ◽  
Pramod Kumar Jain ◽  
Manoranjan Parida
2012 ◽  
Vol 253-255 ◽  
pp. 1365-1368
Author(s):  
Ge Qi Qi ◽  
Jian Ping Wu ◽  
Yi Man Du

With the rapid development of the society, the transportation system has become more complicated and vulnerable. For simulating the real-time traffic condition of the whole city, a wide range of OD matrix data are needed which are hard to collect in whole based on the present conventional methods. The paper raises a feasible design of the traffic simulation platform based on the real-time mobile phone data. The popularity and development of mobile phones make the vast amounts of real-time traffic data can be collected and usable. With the help of the GIS module, dynamic OD traffic generation module and other related modules, the real-time mobile phone data will be converted to the valuable traffic data and applied to the traffic simulation platform.


2018 ◽  
Vol 114 ◽  
pp. 4-11 ◽  
Author(s):  
Yina Wu ◽  
Mohamed Abdel-Aty ◽  
Jaeyoung Lee

Author(s):  
Seri Oh ◽  
Stephen G. Ritchie ◽  
Cheol Oh

Accurate traffic data acquisition is essential for effective traffic surveillance, which is the backbone of advanced transportation management and information systems (ATMIS). Inductive loop detectors (ILDs) are still widely used for traffic data collection in the United States and many other countries. Three fundamental traffic parameters—speed, volume, and occupancy—are obtainable via single or double (speed-trap) ILDs. Real-time knowledge of such traffic parameters typically is required for use in ATMIS from a single loop detector station, which is the most commonly used. However, vehicle speeds cannot be obtained directly. Hence, the ability to estimate vehicle speeds accurately from single loop detectors is of considerable interest. In addition, operating agencies report that conventional loop detectors are unable to achieve volume count accuracies of more than 90% to 95%. The improved derivation of fundamental real-time traffic parameters, such as speed, volume, occupancy, and vehicle class, from single loop detectors and inductive signatures is demonstrated.


2014 ◽  
Vol 6 ◽  
pp. 797293 ◽  
Author(s):  
Zhu Jiang ◽  
Shubin Li

According to the estimation information of dynamic traffic demands, a novel optimal control model of freeway was established on the basis of the hierarchical concept. There are four control modules in this model. The OD prediction module predicts the total traffic demands in a long time and determines the upper bound of the future queuing length in advance; the global optimal control module predicts the future traffic state and establishes the coordination constraints for each ramp in the network; the traffic demand estimation module estimates the real-time traffic conditions for each ramp; the local adaptive control module regulates ramp metering rate according to the estimated information of the real-time traffic conditions and the results optimized by the global optimal control module. The simulation results show that this control system is of a good dynamic performance. It coordinates the benefits of various ramps and optimizes the overall performance of the freeway network.


Sign in / Sign up

Export Citation Format

Share Document