Build-up electrical insulation material with low-dielectric tangent, low-CTE and low-surface roughness

Author(s):  
Isao Suzuki ◽  
Toshiaki Tanaka ◽  
Akihiro Uenishi ◽  
Takayuki Kobayashi ◽  
Junnosuke Murakami
2011 ◽  
Vol 2011 (1) ◽  
pp. 000813-000819
Author(s):  
Eita HORIKI ◽  
Isao SUZUKI ◽  
Toshiaki TANAKA ◽  
Akihiro UENISHI ◽  
Hiroshi KOUYANAGI

With the increasing speed of information and communication equipments in recent years, together with the high-speed signal processing of LSIs, there is a requirement for build-up electrical insulation materials (used in IC package substrates) to have low-dielectric loss tangent which reduces dielectric loss so as to achieve low transmission loss in the high-frequency GHz bands. At the same time, there is an increasing need for materials to have low-CTEs (Coefficient of Thermal Expansion) so as to ensure highly reliable substrates. With ou formulation technology, we have developed a next-generation film-shaped build-up electrical insulation material compatible with high-frequency signal transmission by using a composition of practical thermosetting epoxy resin, which has realized both a low-dielectric loss tangent and at the same time, a low-CTE. In addition, this material can show a low-surface roughness after the film desmear process. It is thus expected to help reduce not only dielectric loss by means of a low-dielectric loss tangent, but also conductor loss caused by the skin effect, and will promote fine line formation by means of SAP (Semi Additive Process).


2019 ◽  
Vol 41 (2) ◽  
pp. 682-690
Author(s):  
Subhash Nimanpure ◽  
Syed Azhar Rasheed Hashmi ◽  
Rajnish Kumar ◽  
Ajay Naik

In electrical insulation material designing, treeing is an electrical pre-breakdown marvel in strong protection. Treeing is a typical breakdown component and wellspring of electrical deficiencies in insulation of electrical applications protection. Moreover, water treeing is a diffuse part of the way conductive 3D crest-like a shape inside the utilized dielectrics in covered or water-drenched electrical applications. Nanotechnology techniques have been enhancing the dielectric strength performance with respect to traditional dielectrics. Therefore, this chapter discusses the treeing mechanisms in theoretical models for various nanodielectrics insulation materials. Water treeing in nanodielectrics is also addressed. Furthermore, this chapter contains forecast and recommendations to enhance insulation performance of electrical applications.


Sign in / Sign up

Export Citation Format

Share Document