Towards Achieving a Secure Authentication Mechanism for IoT Devices in 5G Networks

Author(s):  
Bernardo de Matos Patrocinio dos Santos ◽  
Bruno Dzogovic ◽  
Boning Feng ◽  
Van Thuan Do ◽  
Niels Jacot ◽  
...  
Author(s):  
Hamza Sajjad Ahmad ◽  
Muhammad Junaid Arshad ◽  
Muhammad Sohail Akram

To send data over the network, devices need to authenticate themselves within the network. After authentication, the device will be able to send the data in-network. After authentication, secure communication of devices is an important task that is done with an encryption method. IoT network devices have a very small circuit with low resources and low computation power. By considering low power, less memory, low computation, and all the aspect of IoT devices, an encryption technique is needed that is suitable for this type of device. As IoT networks are heterogeneous, each device has different hardware properties, and all the devices are not on one scale. To make IoT networks secure, this paper starts with the secure authentication mechanism to verify the device that wants to be a part of the network. After that, an encryption algorithm is presented that will make the communication secure. This encryption algorithm is designed by considering all the important aspects of IoT devices (low computation, low memory, and cost).


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 882 ◽  
Author(s):  
Jesus Sanchez-Gomez ◽  
Dan Garcia-Carrillo ◽  
Rafael Marin-Perez ◽  
Antonio Skarmeta

Security is critical in the deployment and maintenance of novel IoT and 5G networks. The process of bootstrapping is required to establish a secure data exchange between IoT devices and data-driven platforms. It entails, among other steps, authentication, authorization, and credential management. Nevertheless, there are few efforts dedicated to providing service access authentication in the area of constrained IoT devices connected to recent wireless networks such as narrowband IoT (NB-IoT) and 5G. Therefore, this paper presents the adaptation of bootstrapping protocols to be compliant with the 3GPP specifications in order to enable the 5G feature of secondary authentication for constrained IoT devices. To allow the secondary authentication and key establishment in NB-IoT and 4G/5G environments, we have adapted two Extensible Authentication Protocol (EAP) lower layers, i.e., PANATIKI and LO-CoAP-EAP. In fact, this approach presents the evaluation of both aforementioned EAP lower layers, showing the contrast between a current EAP lower layer standard, i.e., PANA, and one specifically designed with the constraints of IoT, thus providing high flexibility and scalability in the bootstrapping process in 5G networks. The proposed solution is evaluated to prove its efficiency and feasibility, being one of the first efforts to support secure service authentication and key establishment for constrained IoT devices in 5G environments.


With the widespread popularity of the Internet of Things (IoT), different sectors-based applications are increasingly developed. One of the most popular application layer protocols is the Constrained Application Protocol (CoAP), and the necessity of ensuring data security in this layer is crucial. Moreover, attackers target the vulnerabilities of IoT to gain access to the system, which leads to a security threat and violate privacy. Typically, user authentication and data encryption are applied for securing data communication over a public channel between two or more participants. However, most of the existing solutions use cryptography for achieving security, with the exception of high computation cost. Hence, these solutions fail to satisfy the resource-constrained characteristics of IoT devices. Therefore, a lightweight security mechanism is required for achieving both secure transmission and better performance. This paper proposes a Lightweight Authentication with Two-way Encryption for Secure Transmission in CoAP Protocol (LATEST) that provides a secure transmission between the server and IoT devices. This mutual authentication mechanism uses ROT 18 Cipher with XoR operation and 128-bit AES based encryption for securing the data transmission. The ROT18 Cipher is a monoalphabetic substitution cipher, which is a combination of ROT13 and ROT5. The proposed scheme employs symmetric encryption in both client and server for ensuring secure authentication and mutually confirm each other identity. In addition, the proposed LATEST scheme ensures confidentiality and integrity by being resistant to replay attacks, impersonation attacks, and modification attacks. The experimental evaluation demonstrates that the proposed LATEST scheme is lightweight and provides better security compared to the existing scheme.


2021 ◽  
Author(s):  
Samah Mohammed S ALhusayni ◽  
Wael Ali Alosaimi

Internet of Things (IoT) has a huge attention recently due to its new emergence, benefits, and contribution to improving the quality of human lives. Securing IoT poses an open area of research, as it is the base of allowing people to use the technology and embrace this development in their daily activities. Authentication is one of the influencing security element of Information Assurance (IA), which includes confidentiality, integrity, and availability, non repudiation, and authentication. Therefore, there is a need to enhance security in the current authentication mechanisms. In this report, some of the authentication mechanisms proposed in recent years have been presented and reviewed. Specifically, the study focuses on enhancement of security in CoAP protocol due to its relevance to the characteristics of IoT devices and its need to enhance its security by using the symmetric key with biometric features in the authentication. This study will help in providing secure authentication technology for IoT data, device, and users.


2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Secure and efficient authentication mechanism becomes a major concern in cloud computing due to the data sharing among cloud server and user through internet. This paper proposed an efficient Hashing, Encryption and Chebyshev HEC-based authentication in order to provide security among data communication. With the formal and the informal security analysis, it has been demonstrated that the proposed HEC-based authentication approach provides data security more efficiently in cloud. The proposed approach amplifies the security issues and ensures the privacy and data security to the cloud user. Moreover, the proposed HEC-based authentication approach makes the system more robust and secured and has been verified with multiple scenarios. However, the proposed authentication approach requires less computational time and memory than the existing authentication techniques. The performance revealed by the proposed HEC-based authentication approach is measured in terms of computation time and memory as 26ms, and 1878bytes for 100Kb data size, respectively.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 295
Author(s):  
Murali S ◽  
Manimaran A ◽  
Selvakumar K ◽  
Dinesh Kumar S

The secured web-based voting framework is the need of the present time. We propose another secure authentication for the online voting framework by utilizing face recognition and hashing algorithm. A simple verification process is accomplished during the initial registration process via email and phone. The voter is asked to give a unique identification number (UIN) provided by the election authority and face image at the time of main registration. This UIN is converted into a secret key using the SHA algorithm. The face image that is saved in the Amazon web service (AWS) acts as an authentication mechanism which enables people to cast their vote secretly. The voters, who cast numerous votes amid the way toward voting is guaranteed to be counteracted by encrypted UIN.  The election organizers can see the election parallelly as the voting is saved in the real-time database. The privacy of the voter is maintained as the details are converted into the key. In this system, an individual can vote from outside of his/her allocated constituency.  


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1102
Author(s):  
Kareemulla Shaik ◽  
Md. Ali Hussain

Broadcast Communication is crucial in VANET communication, to send and receive safety messages within network. Securing these beacon message is a challenge, since they are very prone to clone and Sybil attacks. Many works have been proposed to address this problem but they failed to address how to detect and protect these messages from clone attacks and also limited to static networks with limited data sizes.  To achieve this a secure authentication and attack detection mechanism can be designed. In this paper we propose a secure broadcast message authentication and attack detection mechanism with Identity – Based Signatures. Experimental results proved that it can be used in both V2V and V2RSU c communications.   Our scheme shown best performance compared to existing schemes in terms of packet delivery ration, detection rate and detection time.  


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4905 ◽  
Author(s):  
Rongxu Xu ◽  
Wenquan Jin ◽  
Dohyeun Kim

Internet of Things (IoT) devices are embedded with software, electronics, and sensors, and feature connectivity with constrained resources. They require the edge computing paradigm, with modular characteristics relying on microservices, to provide an extensible and lightweight computing framework at the edge of the network. Edge computing can relieve the burden of centralized cloud computing by performing certain operations, such as data storage and task computation, at the edge of the network. Despite the benefits of edge computing, it can lead to many challenges in terms of security and privacy issues. Thus, services that protect privacy and secure data are essential functions in edge computing. For example, the end user’s ownership and privacy information and control are separated, which can easily lead to data leakage, unauthorized data manipulation, and other data security concerns. Thus, the confidentiality and integrity of the data cannot be guaranteed and, so, more secure authentication and access mechanisms are required to ensure that the microservices are exposed only to authorized users. In this paper, we propose a microservice security agent to integrate the edge computing platform with the API gateway technology for presenting a secure authentication mechanism. The aim of this platform is to afford edge computing clients a practical application which provides user authentication and allows JSON Web Token (JWT)-based secure access to the services of edge computing. To integrate the edge computing platform with the API gateway, we implement a microservice security agent based on the open-source Kong in the EdgeX Foundry framework. Also to provide an easy-to-use approach with Kong, we implement REST APIs for generating new consumers, registering services, configuring access controls. Finally, the usability of the proposed approach is demonstrated by evaluating the round trip time (RTT). The results demonstrate the efficiency of the system and its suitability for real-world applications.


Sign in / Sign up

Export Citation Format

Share Document