Improved genetic algorithm with external archive maintenance for multi-objective integrated process planning and scheduling

Author(s):  
Xiaoyu Wen ◽  
Xinyu Li ◽  
Liang Gao ◽  
Wenwen Wang ◽  
Liang Wan
Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6181
Author(s):  
Xu Zhang ◽  
Hua Zhang ◽  
Jin Yao

With the emergence of the concept of green manufacturing, more manufacturers have attached importance to energy consumption indicators. The process planning and shop scheduling procedures involved in manufacturing processes can both independently achieve energy savings, however independent optimization approaches limit the optimization space. In order to achieve a better optimization effect, the optimization of energy savings for integrated process planning and scheduling (IPPS) was studied in this paper. A mathematical model for multi-objective optimization of IPPS was established to minimize the total energy consumption, makespan, and peak power of the job shop. A hierarchical multi-strategy genetic algorithm based on non-dominated sorting (NSHMSGA) was proposed to solve the problem. This algorithm was based on the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) framework, in which an improved hierarchical coding method is used, containing a variety of genetic operators with different strategies, and in which a population degradation mechanism based on crowding distance is adopted. The results from the case study in this paper showed that the proposed method reduced the energy consumption by approximately 15% for two different scheduling schemes with the same makespan. The computational results for NSHMSGA and NSGA-Ⅱ approaches were evaluated quantitatively in the case study. The C-metric values for NSHMSGA and NSGA-Ⅱ were 0.78 and 0, the spacing metric values were 0.4724 and 0.5775, and the maximum spread values were 1.6404 and 1.3351, respectively. The evaluation indexes showed that the NSHMSGA approach could obtain a better non-dominated solution set than the NSGA-Ⅱ approach in order to solve the multi-objective IPPS problem proposed in this paper.


2011 ◽  
Vol 291-294 ◽  
pp. 331-334
Author(s):  
Jin Feng Wang ◽  
Shi Jie Li ◽  
Shun Cheng Fan

Process planning and scheduling are two important manufacturing activities in the manufacturing system. In this paper, an improved genetic algorithm(GA) has been developed to facilitate the integration and optimization of process planning and scheduling. To improve the optimization performance, an efficient genetic representation has been developed. Selection, crossover, and mutation operators have been described. Simulation studies have been established to evaluate the performance of the algorithm. The results show that the algorithm is a promising and effective method for the integration of process planning and scheduling(IPPS).


Sign in / Sign up

Export Citation Format

Share Document