A Comparison Based Analysis on the Performance of Deep Neural Network Models in Terms of Classifying Pneumonia from Chest X-ray Images

Author(s):  
Nasrin Akter ◽  
Md Tanzim Reza ◽  
Md. Ashraful Alam
2021 ◽  
Vol 56 (2) ◽  
pp. 235-248
Author(s):  
Fatchul Arifin ◽  
Herjuna Artanto ◽  
Nurhasanah ◽  
Teddy Surya Gunawan

COVID-19 is a new disease with a very rapid and tremendous spread. The most important thing needed now is a COVID-19 early detection system that is fast, easy to use, portable, and affordable. Various studies on desktop-based detection using Convolutional Neural Networks have been successfully conducted. However, no research has yet applied mobile-based detection, which requires low computational cost. Therefore, this research aims to produce a COVID-19 early detection system based on chest X-ray images using Convolutional Neural Network models to be deployed in mobile applications. It is expected that the proposed Convolutional Neural Network models can detect COVID-19 quickly, economically, and accurately. The used architecture is MobileNet's Single Shot Detection. The advantage of the Single Shot Detection MobileNet models is that they are lightweight to be applied to mobile-based devices. Therefore, these two versions will also be tested, which one is better. Both models have successfully detected COVID-19, normal, and viral pneumonia conditions with an average overall accuracy of 93.24% based on the test results. The Single Shot Detection MobileNet V1 model can detect COVID-19 with an average accuracy of 83.7%, while the Single Shot Detection MobileNet V2 Single Shot Detection model can detect COVID-19 with an average accuracy of 87.5%. Based on the research conducted, it can be concluded that the approach to detecting chest X-rays of COVID-19 can be detected using the MobileNet Single Shot Detection model. Besides, the V2 model shows better performance than the V1. Therefore, this model can be applied to increase the speed and affordability of COVID-19 detection.


Author(s):  
Soumya Ranjan Nayak ◽  
Janmenjoy Nayak ◽  
Utkarsh Sinha ◽  
Vaibhav Arora ◽  
Uttam Ghosh ◽  
...  

ChemMedChem ◽  
2021 ◽  
Author(s):  
Christoph Grebner ◽  
Hans Matter ◽  
Daniel Kofink ◽  
Jan Wenzel ◽  
Friedemann Schmidt ◽  
...  

2021 ◽  
Author(s):  
Liangrui Pan ◽  
boya ji ◽  
Xiaoqi wang ◽  
shaoliang peng

The use of chest X-ray images (CXI) to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) caused by Coronavirus Disease 2019 (COVID-19) is life-saving important for both patients and doctors. This research proposed a multi-channel feature deep neural network algorithm to screen people infected with COVID-19. The algorithm integrates data oversampling technology and a multi-channel feature deep neural network model to carry out the training process in an end-to-end manner. In the experiment, we used a publicly available CXI database with 10,192 Normal, 6012 Lung Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia images. Compared with traditional deep learning models (Densenet201, ResNet50, VGG19, GoogLeNet), the MFDNN model obtains an average test accuracy of 93.19% in all data. Furthermore, in each type of screening, the precision, recall, and F1 Score of the MFDNN model are also better than traditional deep learning networks. Secondly, compared with the latest CoroDet model, the MFDNN algorithm is 1.91% higher than the CoroDet model in the experiment of detecting the four categories of COVID19 infected persons. Finally, our experimental code will be placed at https://github.com/panliangrui/covid19.


2021 ◽  
Author(s):  
Jesus Cano ◽  
Lorenzo Facila ◽  
Philip Langley ◽  
Roberto Zangroniz ◽  
Raul Alcaraz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document