scholarly journals MFDNN: Multi-channel feature deep neural network algorithm to identify Covid19 chest X-ray images

Author(s):  
Liangrui Pan ◽  
boya ji ◽  
Xiaoqi wang ◽  
shaoliang peng

The use of chest X-ray images (CXI) to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) caused by Coronavirus Disease 2019 (COVID-19) is life-saving important for both patients and doctors. This research proposed a multi-channel feature deep neural network algorithm to screen people infected with COVID-19. The algorithm integrates data oversampling technology and a multi-channel feature deep neural network model to carry out the training process in an end-to-end manner. In the experiment, we used a publicly available CXI database with 10,192 Normal, 6012 Lung Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia images. Compared with traditional deep learning models (Densenet201, ResNet50, VGG19, GoogLeNet), the MFDNN model obtains an average test accuracy of 93.19% in all data. Furthermore, in each type of screening, the precision, recall, and F1 Score of the MFDNN model are also better than traditional deep learning networks. Secondly, compared with the latest CoroDet model, the MFDNN algorithm is 1.91% higher than the CoroDet model in the experiment of detecting the four categories of COVID19 infected persons. Finally, our experimental code will be placed at https://github.com/panliangrui/covid19.

2021 ◽  
Author(s):  
Debmitra Ghosh

Abstract SARS-CoV-2 or severe acute respiratory syndrome coronavirus 2 is considered to be the cause of Coronavirus (COVID-19) which is a viral disease. The rapid spread of COVID-19 is having a detrimental effect on the global economy and health. A chest X-ray of infected patients can be considered as a crucial step in the battle against COVID-19. On retrospections, it is found that abnormalities exist in chest X-rays of patients suggestive of COVID-19. This sparked the introduction of a variety of deep learning systems and studies which have shown that the accuracy of COVID-19 patient detection through the use of chest X-rays is strongly optimistic. Although there are certain shortcomings like deep learning networks like convolutional neural networks (CNNs) need a substantial amount of training data but the outbreak is recent, so it is large datasets of radiographic images of the COVID-19 infected patients are not available in such a short time. Here, in this research, we present a method to generate synthetic chest X-ray (CXR) images by developing a Deep Convolution Generative Adversarial Network-based model. In addition, we demonstrate that the synthetic images produced from DCGAN can be utilized to enhance the performance of CNN for COVID-19 detection. Classification using CNN alone yielded 85% accuracy. Although there are several models available, we chose MobileNet as it is a lightweight deep neural network, with fewer parameters and higher classification accuracy. Here we are using a deep neural network-based model to diagnose COVID-19 infected patients through radiological imaging of 5,859 Chest X-Ray images. We are using a Deep Convolutional Neural Network and a pre-trained model “DenseNet 121” for two new label classes (COVID-19 and Normal). To improve the classification accuracy, in our work we have further reduced the number of network parameters by introducing dense blocks that are proposed in DenseNets into MobileNet. By adding synthetic images produced by DCGAN, the accuracy increased to 97%. Our goal is to use this method to speed up COVID-19 detection and lead to more robust systems of radiology.


Author(s):  
Soumya Ranjan Nayak ◽  
Janmenjoy Nayak ◽  
Utkarsh Sinha ◽  
Vaibhav Arora ◽  
Uttam Ghosh ◽  
...  

Author(s):  
Parvathi R. ◽  
Pattabiraman V.

This chapter proposes a hybrid method for classification of the objects based on deep neural network and a similarity-based search algorithm. The objects are pre-processed with external conditions. After pre-processing and training different deep learning networks with the object dataset, the authors compare the results to find the best model to improve the accuracy of the results based on the features of object images extracted from the feature vector layer of a neural network. RPFOREST (random projection forest) model is used to predict the approximate nearest images. ResNet50, InceptionV3, InceptionV4, and DenseNet169 models are trained with this dataset. A proposal for adaptive finetuning of the deep learning models by determining the number of layers required for finetuning with the help of the RPForest model is given, and this experiment is conducted using the Xception model.


2020 ◽  
Vol 25 (6) ◽  
pp. 553-565 ◽  
Author(s):  
Boran Sekeroglu ◽  
Ilker Ozsahin

The detection of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is responsible for coronavirus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for both patients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images (1583 healthy, 4292 pneumonia, and 225 confirmed COVID-19) were used in the experiments, which involved the training of deep learning and machine learning classifiers. Thirty-eight experiments were performed using convolutional neural networks, 10 experiments were performed using five machine learning models, and 14 experiments were performed using the state-of-the-art pre-trained networks for transfer learning. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean sensitivity of 93.84%, mean specificity of 99.18%, mean accuracy of 98.50%, and mean receiver operating characteristics–area under the curve scores of 96.51% are achieved. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID-19 in a limited number of, and in imbalanced, chest X-ray images.


Sign in / Sign up

Export Citation Format

Share Document