Remote Sensing Image Target Recognition Based on Pruned Deep Neural Network Models

Author(s):  
Daheng Cheng ◽  
Zhengwu Yuan ◽  
Yuanfeng Wu
Author(s):  
Xiaofeng Han ◽  
Tao Jiang ◽  
Zifei Zhao ◽  
Zhongteng Lei

Target recognition is an important application in the time of high-resolution remote sensing images. However, the traditional target recognition method has the characteristics of artificial design, and the generalization ability is not strong, which makes it difficult to meet the requirement of the current mass data. Therefore, it is urgent to explore new methods for feature extraction and target recognition and location in remote sensing images. Convolutional neural network in deep learning can extract representative and discriminative multi-level features of typical features from images, so it can be used for multi-target recognition of remote sensing big data in complex scenes. In this study, NWPU VHR-10 data was selected, 50% was used for training, and the remainder was used for verification. The target recognition effects of two kinds of convolutional neural network models, Faster R-CNN and SSD, were studied and compared, and the mean average precision (mAP) was used for evaluation. The evaluation results show that the Faster R-CNN has three categories with an accuracy of more than 80%, and the SSD has seven categories with an accuracy of more than 80%, all of which show good results. The SSD model is particularly prominent in running time and recognition results, which proves convolutional neural networks have broad application prospects in the target recognition of remote sensing image data.


2019 ◽  
Vol 12 (1) ◽  
pp. 86 ◽  
Author(s):  
Rafael Pires de Lima ◽  
Kurt Marfurt

Remote-sensing image scene classification can provide significant value, ranging from forest fire monitoring to land-use and land-cover classification. Beginning with the first aerial photographs of the early 20th century to the satellite imagery of today, the amount of remote-sensing data has increased geometrically with a higher resolution. The need to analyze these modern digital data motivated research to accelerate remote-sensing image classification. Fortunately, great advances have been made by the computer vision community to classify natural images or photographs taken with an ordinary camera. Natural image datasets can range up to millions of samples and are, therefore, amenable to deep-learning techniques. Many fields of science, remote sensing included, were able to exploit the success of natural image classification by convolutional neural network models using a technique commonly called transfer learning. We provide a systematic review of transfer learning application for scene classification using different datasets and different deep-learning models. We evaluate how the specialization of convolutional neural network models affects the transfer learning process by splitting original models in different points. As expected, we find the choice of hyperparameters used to train the model has a significant influence on the final performance of the models. Curiously, we find transfer learning from models trained on larger, more generic natural images datasets outperformed transfer learning from models trained directly on smaller remotely sensed datasets. Nonetheless, results show that transfer learning provides a powerful tool for remote-sensing scene classification.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Christoph Grebner ◽  
Hans Matter ◽  
Daniel Kofink ◽  
Jan Wenzel ◽  
Friedemann Schmidt ◽  
...  

2021 ◽  
Author(s):  
Jesus Cano ◽  
Lorenzo Facila ◽  
Philip Langley ◽  
Roberto Zangroniz ◽  
Raul Alcaraz ◽  
...  

2020 ◽  
Vol 1662 ◽  
pp. 012010
Author(s):  
F Colecchia ◽  
J K Ruffle ◽  
G C Pombo ◽  
R Gray ◽  
H Hyare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document