IoT based Soil Nutrition and Plant Disease Detection System for Smart Agriculture

Author(s):  
Sashant Suhag ◽  
Nidhi Singh ◽  
Sanskriti Jadaun ◽  
Prashant Johri ◽  
Ayush Shukla ◽  
...  
Author(s):  
Sukanta Ghosh ◽  
Shubhanshu Arya ◽  
Amar Singh

Agricultural production is one of the main factors affecting a country's domestic market situation. Many problems are the reasons for estimating crop yields, which vary in different parts of the world. Overuse of chemical fertilizers, uneven distribution of rainfall, and uneven soil fertility lead to plant diseases. This forces us to focus on effective methods for detecting plant diseases. It is important to find an effective plant disease detection technique. Plants need to be monitored from the beginning of their life cycle to avoid such diseases. Observation is a kind of visual observation, which is time-consuming, costly, and requires a lot of experience. For speeding up this process, it is necessary to automate the disease detection system. A lot of researchers have developed plant leaf detection systems based on various technologies. In this chapter, the authors discuss the potential of methods for detecting plant leaf diseases. It includes various steps such as image acquisition, image segmentation, feature extraction, and classification.


Area of agriculture plant disease detection attracts is very important one, main role is diseases detection. To develop the plant diseases detection, it required to identify arrival of the diseases in the leaf and instruction to the agriculturalists. In this proposed work, a leaf disease detection system (LDDS) based on Otsu segment (OS) is developed to identify and classify the diseases in the set of leaves. Clustering scheme is offered from segmented image of the diseased leaf. Otsu segmentation is measured the size of segmented leaf are uploaded to less storage place. In observing location, the amounts are retrieved as well as the features are extracted from the original segmented image. The enhancement as well as classification is used to SVM based on PSO classifier. The overall design of this paper is LDDS take scan be calculated in terms of system efficiency and it is compared with the existing methods. The result indicates the research technique offers a whole detection accuracy of 90.5% and classification accuracy of 90.4%.


2021 ◽  
Vol 6 (4) ◽  
pp. 13-16
Author(s):  
Bhoopendra Joshi ◽  
Abhinav Kumar ◽  
Satyam Kashyap ◽  
Nooruddin Nagdi ◽  
Sukhdarshan Vinayak ◽  
...  

Author(s):  
J Bhuvana ◽  
T. T Mirnalinee

Agriculture is the backbone of Indian economy. Conventional farming systems are no longer being followed by our generation, due to lack of knowledge and expertise. Advancement of technologies pave a path that make a transition from traditional farming methods to smart agriculture by automating the processes involved. Challenges faced by today’s agriculture are depletion of soil nutrients and diseases caused by pests which lead to low productivity, irrigation problems, soil erosion, shortage of storage facilities, availability of quality seeds, lack of transportation, poor marketing etc. Among all these challenges in agriculture, prediction of diseases remains a major issue to be addressed. Identifying diseases based on visual inspection is the traditional way of farming which needs knowledge and experience to handle. Automating the process of detecting and identifying through visual inspection (cognitive) is the motivation behind this work. This is made possible with the availability of images of the plant or parts of plants, since most diseases are reflected on the leaves. A deep learning network architecture named Plant Disease Detection Network PDDNet-cv and a transfer learning approach of identifying diseases in plants were proposed. Our proposed system is compared with VGG19, ResNet50, InceptionResNetV2, the state-of-the-art methods reported in [9, 13, 5] and the results show that our method is significantly performing better than the existing systems. Our proposed PDDNet-cv has achieved average classification accuracy of 99.09% in detecting different classes of diseases. The proposed not so deep architecture is performing well compared to other deep learning architectures in terms of performance and computational time.


Sign in / Sign up

Export Citation Format

Share Document