Plant Disease Detection Using Machine Learning Approaches

Author(s):  
Sukanta Ghosh ◽  
Shubhanshu Arya ◽  
Amar Singh

Agricultural production is one of the main factors affecting a country's domestic market situation. Many problems are the reasons for estimating crop yields, which vary in different parts of the world. Overuse of chemical fertilizers, uneven distribution of rainfall, and uneven soil fertility lead to plant diseases. This forces us to focus on effective methods for detecting plant diseases. It is important to find an effective plant disease detection technique. Plants need to be monitored from the beginning of their life cycle to avoid such diseases. Observation is a kind of visual observation, which is time-consuming, costly, and requires a lot of experience. For speeding up this process, it is necessary to automate the disease detection system. A lot of researchers have developed plant leaf detection systems based on various technologies. In this chapter, the authors discuss the potential of methods for detecting plant leaf diseases. It includes various steps such as image acquisition, image segmentation, feature extraction, and classification.

Area of agriculture plant disease detection attracts is very important one, main role is diseases detection. To develop the plant diseases detection, it required to identify arrival of the diseases in the leaf and instruction to the agriculturalists. In this proposed work, a leaf disease detection system (LDDS) based on Otsu segment (OS) is developed to identify and classify the diseases in the set of leaves. Clustering scheme is offered from segmented image of the diseased leaf. Otsu segmentation is measured the size of segmented leaf are uploaded to less storage place. In observing location, the amounts are retrieved as well as the features are extracted from the original segmented image. The enhancement as well as classification is used to SVM based on PSO classifier. The overall design of this paper is LDDS take scan be calculated in terms of system efficiency and it is compared with the existing methods. The result indicates the research technique offers a whole detection accuracy of 90.5% and classification accuracy of 90.4%.


Author(s):  
Onkar Kunjir

Plant diseases affect the life of not only farmers but also businesses which are dependent on it. Plant disease detection is a computer vision problem which tries to identify the disease splat is infected using an image of a plant leaf. Different kinds of models have been proposed to tackle this problem. This paper focuses on generating small, lightweight and accurate models with the help of deep learning and transfer learning.


2012 ◽  
Vol 102 (7) ◽  
pp. 652-655 ◽  
Author(s):  
K. L. Everts ◽  
L. Osborne ◽  
A. J. Gevens ◽  
S. J. Vasquez ◽  
B. K. Gugino ◽  
...  

Extension plant pathologists deliver science-based information that protects the economic value of agricultural and horticultural crops in the United States by educating growers and the general public about plant diseases. Extension plant pathologists diagnose plant diseases and disorders, provide advice, and conduct applied research on local and regional plant disease problems. During the last century, extension plant pathology programs have adjusted to demographic shifts in the U.S. population and to changes in program funding. Extension programs are now more collaborative and more specialized in response to a highly educated clientele. Changes in federal and state budgets and policies have also reduced funding and shifted the source of funding of extension plant pathologists from formula funds towards specialized competitive grants. These competitive grants often favor national over local and regional plant disease issues and typically require a long lead time to secure funding. These changes coupled with a reduction in personnel pose a threat to extension plant pathology programs. Increasing demand for high-quality, unbiased information and the continued reduction in local, state, and federal funds is unsustainable and, if not abated, will lead to a delay in response to emerging diseases, reduce crop yields, increase economic losses, and place U.S. agriculture at a global competitive disadvantage. In this letter, we outline four recommendations to strengthen the role and resources of extension plant pathologists as they guide our nation's food, feed, fuel, fiber, and ornamental producers into an era of increasing technological complexity and global competitiveness.


Author(s):  
Meghashree ◽  
Alwyn Edison Mendonca ◽  
Ashika S Shetty

Plant disease is an on-going challenge for the farmers and it has been one of the major threats to the income and the food security. This project is used to classify plant leaf into diseased and healthy leaf,to improve the quality and quantity of agricultural production in the country. The innovative technology that helps in improve the quality and quantity in the agricultural field is the smart farming system. It represented the modern method that provides cost-effective disease detection and deep learning with convolutional neural networks (CNNs) has achieved large successfulness in the categorisation of different plant leaf diseases. CNN reads a really very larger picture in a simple way. CNN nearly utilised to examine visual imagery and are frequently working behind the scenes in image classification. To extract the general features and then classify them under multiple based upon the features detected. This project will help the farmers financially in increasing the production of the crop yield as well as the overall agricultural production. The paper reviews the expected methods of plant leaf disease detection system that facilitates the advancement in agriculture. It includes various phases such as image preprocessing, image classification, feature extraction and detecting healthy or diseased.


2021 ◽  
Vol 11 (4) ◽  
pp. 251-264
Author(s):  
Radhika Bhagwat ◽  
Yogesh Dandawate

Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 939 ◽  
Author(s):  
Marko Arsenovic ◽  
Mirjana Karanovic ◽  
Srdjan Sladojevic ◽  
Andras Anderla ◽  
Darko Stefanovic

Plant diseases cause great damage in agriculture, resulting in significant yield losses. The recent expansion of deep learning methods has found its application in plant disease detection, offering a robust tool with highly accurate results. The current limitations and shortcomings of existing plant disease detection models are presented and discussed in this paper. Furthermore, a new dataset containing 79,265 images was introduced with the aim to become the largest dataset containing leaf images. Images were taken in various weather conditions, at different angles, and daylight hours with an inconsistent background mimicking practical situations. Two approaches were used to augment the number of images in the dataset: traditional augmentation methods and state-of-the-art style generative adversarial networks. Several experiments were conducted to test the impact of training in a controlled environment and usage in real-life situations to accurately identify plant diseases in a complex background and in various conditions including the detection of multiple diseases in a single leaf. Finally, a novel two-stage architecture of a neural network was proposed for plant disease classification focused on a real environment. The trained model achieved an accuracy of 93.67%.


Sign in / Sign up

Export Citation Format

Share Document