3D model matching with Viewpoint-Invariant Patches (VIP)

Author(s):  
Changchang Wu ◽  
Brian Clipp ◽  
Xiaowei Li ◽  
Jan-Michael Frahm ◽  
Marc Pollefeys
Keyword(s):  
3D Model ◽  
2021 ◽  
Vol 132 ◽  
pp. 103520
Author(s):  
Xin Lin ◽  
Kunpeng Zhu ◽  
Min Zhou ◽  
Jerry Ying Hsi Fuh ◽  
Qing-guo Wang

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kehua Guo ◽  
Yongling Liu ◽  
Guihua Duan

Partial model matching approaches are important to target recognition. In this paper, aiming at a 3D model, a novel solution utilizing Gaussian curvature and mean curvature to represent the inherent structure of a spatial shape is proposed. Firstly, a Point-Pair Set is constructed by means of filtrating points with a similar inherent characteristic in the partial surface. Secondly, a Triangle-Pair Set is demonstrated after locating the spatial model by asymmetry triangle skeleton. Finally, after searching similar triangles in a Point-Pair Set, optimal transformation is obtained by computing the scoring function in a Triangle-Pair Set, and optimal matching is determined. Experiments show that this algorithm is suitable for partial model matching. Encouraging matching efficiency, speed, and running time complexity to irregular models are indicated in the study.


2006 ◽  
Vol 129 (1) ◽  
pp. 190-201 ◽  
Author(s):  
Vahram Avagyan ◽  
Armen Zakarian ◽  
Pravansu Mohanty

In recent years the increased use of 3D scanning hardware has introduced a new type of data to the design and manufacturing field. In many design and manufacturing applications (e.g., part refurbishing or remanufacturing) a scanned 3D model may be provided as an input to a shape matching system to search the database for related or identical models with the purpose of extracting useful information. The introduction of scanned 3D models restricts the use of the CAD-based 3D model search and comparison methods due to significant differences in model representations. The CAD models provide structured and high-level representation of the part features, whereas the scanned 3D models usually come in a polygonal mesh representation, which does not directly reveal engineering features of the part. These differences require new algorithms for comparing the shapes of scanned 3D models, ones that are robust against different scanning technologies and can be adjusted to work with different representations of the models. In this paper, a new approach and algorithms for scanned 3D shape matching and comparison are presented. Given the scanned 3D model as an input the approach first uses general-purpose shape matching methods to identify a small list of likely matches (i.e., candidate models) for more detailed shape comparison. To perform detailed comparison of the shapes each candidate model is geometrically adjusted (i.e., rotated and translated) with the input using one of two new viewpoint algorithms developed in this paper. Once the candidate models are adjusted they are compared to the input to identify the similarities and differences between their shapes. To accomplish this task a new 3D shape matching algorithm is developed. The relevance of the methodology developed in this paper is illustrated with the application of scanned 3D shape matching and comparison algorithms in rapid manufacturing of broken parts.


Sign in / Sign up

Export Citation Format

Share Document