scholarly journals Textural Hausdorff Distance for wider-range tolerance to pose variation and misalignment in 2D face recognition

Author(s):  
Sanqiang Zhao ◽  
Yongsheng Gao
2013 ◽  
Vol 8 (2) ◽  
pp. 787-795
Author(s):  
Sasi Kumar Balasundaram ◽  
J. Umadevi ◽  
B. Sankara Gomathi

This paper aims to achieve the best color face recognition performance. The newly introduced feature selection method takes advantage of novel learning which is used to find the optimal set of color-component features for the purpose of achieving the best face recognition result. The proposed color face recognition method consists of two parts namely color-component feature selection with boosting and color face recognition solution using selected color component features. This method is better than existing color face recognition methods with illumination, pose variation and low resolution face images. This system is based on the selection of the best color component features from various color models using the novel boosting learning framework. These selected color component features are then combined into a single concatenated color feature using weighted feature fusion. The effectiveness of color face recognition method has been successfully evaluated by the public face databases.


Author(s):  
M. Parisa Beham ◽  
S. M. Mansoor Roomi ◽  
J. Alageshan ◽  
V. Kapileshwaran

Face recognition and authentication are two significant and dynamic research issues in computer vision applications. There are many factors that should be accounted for face recognition; among them pose variation is a major challenge which severely influence in the performance of face recognition. In order to improve the performance, several research methods have been developed to perform the face recognition process with pose invariant conditions in constrained and unconstrained environments. In this paper, the authors analyzed the performance of a popular texture descriptors viz., Local Binary Pattern, Local Derivative Pattern and Histograms of Oriented Gradients for pose invariant problem. State of the art preprocessing techniques such as Discrete Cosine Transform, Difference of Gaussian, Multi Scale Retinex and Gradient face have also been applied before feature extraction. In the recognition phase K- nearest neighbor classifier is used to accomplish the classification task. To evaluate the efficiency of pose invariant face recognition algorithm three publicly available databases viz. UMIST, ORL and LFW datasets have been used. The above said databases have very wide pose variations and it is proved that the state of the art method is efficient only in constrained situations.


Author(s):  
Ali Rehman Shinwari ◽  
Ilkka Kosunen ◽  
Ala Abdulhakim Alariki ◽  
Sami Abduljalil Abdulhak Naji

Sign in / Sign up

Export Citation Format

Share Document