scholarly journals AN EFFECTIVE COLOR FACE RECOGNITION BASED ON BEST COLOR FEATURE SELECTION ALGORITHM USING WEIGHTED FEATURES FUSION SYSTEM

2013 ◽  
Vol 8 (2) ◽  
pp. 787-795
Author(s):  
Sasi Kumar Balasundaram ◽  
J. Umadevi ◽  
B. Sankara Gomathi

This paper aims to achieve the best color face recognition performance. The newly introduced feature selection method takes advantage of novel learning which is used to find the optimal set of color-component features for the purpose of achieving the best face recognition result. The proposed color face recognition method consists of two parts namely color-component feature selection with boosting and color face recognition solution using selected color component features. This method is better than existing color face recognition methods with illumination, pose variation and low resolution face images. This system is based on the selection of the best color component features from various color models using the novel boosting learning framework. These selected color component features are then combined into a single concatenated color feature using weighted feature fusion. The effectiveness of color face recognition method has been successfully evaluated by the public face databases.

2011 ◽  
Vol 20 (5) ◽  
pp. 1425-1434 ◽  
Author(s):  
Jae Young Choi ◽  
Yong Man Ro ◽  
K N Plataniotis

2020 ◽  
Author(s):  
Qiaoqin Li ◽  
Yongguo Liu ◽  
Jiajing Zhu ◽  
Zhi Chen ◽  
Lang Liu ◽  
...  

BACKGROUND For rehabilitation training systems, it is essential to automatically record and recognize exercises, especially when more than one type of exercise is performed without a predefined sequence. Most motion recognition methods are based on feature engineering and machine learning algorithms. Time-domain and frequency-domain features are extracted from original time series data collected by sensor nodes. For high-dimensional data, feature selection plays an important role in improving the performance of motion recognition. Existing feature selection methods can be categorized into filter and wrapper methods. Wrapper methods usually achieve better performance than filter methods; however, in most cases, they are computationally intensive, and the feature subset obtained is usually optimized only for the specific learning algorithm. OBJECTIVE This study aimed to provide a feature selection method for motion recognition of upper-limb exercises and improve the recognition performance. METHODS Motion data from 5 types of upper-limb exercises performed by 21 participants were collected by a customized inertial measurement unit (IMU) node. A total of 60 time-domain and frequency-domain features were extracted from the original sensor data. A hybrid feature selection method by combining filter and wrapper methods (FESCOM) was proposed to eliminate irrelevant features for motion recognition of upper-limb exercises. In the filter stage, candidate features were first selected from the original feature set according to the significance for motion recognition. In the wrapper stage, k-nearest neighbors (kNN), Naïve Bayes (NB), and random forest (RF) were evaluated as the wrapping components to further refine the features from the candidate feature set. The performance of the proposed FESCOM method was verified using experiments on motion recognition of upper-limb exercises and compared with the traditional wrapper method. RESULTS Using kNN, NB, and RF as the wrapping components, the classification error rates of the proposed FESCOM method were 1.7%, 8.9%, and 7.4%, respectively, and the feature selection time in each iteration was 13 seconds, 71 seconds, and 541 seconds, respectively. CONCLUSIONS The experimental results demonstrated that, in the case of 5 motion types performed by 21 healthy participants, the proposed FESCOM method using kNN and NB as the wrapping components achieved better recognition performance than the traditional wrapper method. The FESCOM method dramatically reduces the search time in the feature selection process. The results also demonstrated that the optimal number of features depends on the classifier. This approach serves to improve feature selection and classification algorithm selection for upper-limb motion recognition based on wearable sensor data, which can be extended to motion recognition of more motion types and participants.


2020 ◽  
Author(s):  
dongshen ji ◽  
yanzhong zhao ◽  
zhujun zhang ◽  
qianchuan zhao

In view of the large demand for new coronary pneumonia covid19 image recognition samples,the recognition accuracy is not ideal.In this paper,a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, perform small-sample image enhancement and expansion on the converted picture, such as miscut transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning.Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images,even with only a small number of CT image samples.


2018 ◽  
Vol 1 (3) ◽  
pp. 85-98 ◽  
Author(s):  
Xiaohan Li ◽  
Wenshuo Wang ◽  
Zhang Zhang ◽  
Matthias Rötting

PurposeFeature selection is crucial for machine learning to recognize lane-change (LC) maneuver as there exist a large number of feature candidates. Blindly using feature could take up large storage and excessive computation time, while insufficient feature selection would cause poor performance. Selecting high contributive features to classify LC and lane-keep behavior is effective for maneuver recognition. This paper aims to propose a feature selection method from a statistical view based on an analysis from naturalistic driving data.Design/methodology/approachIn total, 1,375 LC cases are analyzed. To comprehensively select features, the authors extract the feature candidates from both time and frequency domains with various LC scenarios segmented by an occupancy schedule grid. Then the effect size (Cohen’s d) andp-value of every feature are computed to assess their contribution for each scenario.FindingsIt has been found that the common lateral features, e.g. yaw rate, lateral acceleration and time-to-lane crossing, are not strong features for recognition of LC maneuver as empirical knowledge. Finally, cross-validation tests are conducted to evaluate model performance using metrics of receiver operating characteristic. Experimental results show that the selected features can achieve better recognition performance than using all the features without purification.Originality/valueIn this paper, the authors investigate the contributions of each feature from the perspective of statistics based on big naturalistic driving data. The aim is to comprehensively figure out different types of features in LC maneuvers and select the most contributive features over various LC scenarios.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamad-Hoseyn Sigari ◽  
Muhammad-Reza Pourshahabi ◽  
Hamid-Reza Pourreza

Feature selection is an NP-hard problem from the viewpoint of algorithm design and it is one of the main open problems in pattern recognition. In this paper, we propose a new evolutionary-incremental framework for feature selection. The proposed framework can be applied on an ordinary evolutionary algorithm (EA) such as genetic algorithm (GA) or invasive weed optimization (IWO). This framework proposes some generic modifications on ordinary EAs to be compatible with the variable length of solutions. In this framework, the solutions related to the primary generations have short length. Then, the length of solutions may be increased through generations gradually. In addition, our evolutionary-incremental framework deploys two new operators called addition and deletion operators which change the length of solutions randomly. For evaluation of the proposed framework, we use that for feature selection in the application of face recognition. In this regard, we applied our feature selection method on a robust face recognition algorithm which is based on the extraction of Gabor coefficients. Experimental results show that our proposed evolutionary-incremental framework can select a few number of features from existing thousands features efficiently. Comparison result of the proposed methods with the previous methods shows that our framework is comprehensive, robust, and well-defined to apply on many EAs for feature selection.


2015 ◽  
Vol 719-720 ◽  
pp. 1013-1018
Author(s):  
Ying Hui Kong ◽  
Pei Yao Chen

The purpose of multiple biometric fusion is to improve the recognition performance by utilizing their complementary. In this paper, the feature fusion recognition method of multi-view face and gait in video is studied, and a adaptive decision fusion method is proposed. The results showed that the adaptive fusion features carry the most discriminating power compared to any individual biometric and other static fusion rules like Max and Sum.


Sign in / Sign up

Export Citation Format

Share Document