scholarly journals Real-time vehicle global localisation with a single camera in dense urban areas: Exploitation of coarse 3D city models

Author(s):  
Pierre Lothe ◽  
Steve Bourgeois ◽  
Eric Royer ◽  
Michel Dhome ◽  
Sylvie Naudet-Collette
Author(s):  
L. Harrie ◽  
J. Kanters ◽  
K. Mattisson ◽  
P. Nezval ◽  
P.-O. Olsson ◽  
...  

Abstract. In order to meet the increasing needs of housing and services in urban areas, cities are densified. When densifying a city, it is important to provide good living conditions while maintaining a low environmental impact. To ensure this, the urban planning process should include simulations of e.g. noise and daylight conditions. In this paper we describe a newly started projected directed towards the need for quality-assured and harmonised input data to the simulations, in the form of 3D city models. The first part of the paper includes the background and research questions of the project and in the second part a tool for daylight simulations on neighbourhood level is introduced, a tool that will be utilized for evaluating the 3D city model design.


2020 ◽  
Vol 12 (12) ◽  
pp. 1972 ◽  
Author(s):  
Urška Drešček ◽  
Mojca Kosmatin Fras ◽  
Jernej Tekavec ◽  
Anka Lisec

This paper provides the innovative approach of using a spatial extract, transform, load (ETL) solution for 3D building modelling, based on an unmanned aerial vehicle (UAV) photogrammetric point cloud. The main objective of the paper is to present the holistic workflow for 3D building modelling, emphasising the benefits of using spatial ETL solutions for this purpose. Namely, despite the increasing demands for 3D city models and their geospatial applications, the generation of 3D city models is still challenging in the geospatial domain. Advanced geospatial technologies provide various possibilities for the mass acquisition of geospatial data that is further used for 3D city modelling, but there is a huge difference in the cost and quality of input data. While aerial photogrammetry and airborne laser scanning involve high costs, UAV photogrammetry has brought new opportunities, including for small and medium-sized companies, by providing a more flexible and low-cost source of spatial data for 3D modelling. In our data-driven approach, we use a spatial ETL solution to reconstruct a 3D building model from a dense image matching point cloud which was obtained beforehand from UAV imagery. The results are 3D building models in a semantic vector format consistent with the OGC CityGML standard, Level of Detail 2 (LOD2). The approach has been tested on selected buildings in a simple semi-urban area. We conclude that spatial ETL solutions can be efficiently used for 3D building modelling from UAV data, where the data process model developed allows the developer to easily control and manipulate each processing step.


2021 ◽  
Vol 10 (3) ◽  
pp. 138
Author(s):  
Juho-Pekka Virtanen ◽  
Kaisa Jaalama ◽  
Tuulia Puustinen ◽  
Arttu Julin ◽  
Juha Hyyppä ◽  
...  

3D city models and their browser-based applications have become an increasingly applied tool in the cities. One of their applications is the analysis views and visibility, applicable to property valuation and evaluation of urban green infrastructure. We present a near real-time semantic view analysis relying on a 3D city model, implemented in a web browser. The analysis is tested in two alternative use cases: property valuation and evaluation of the urban green infrastructure. The results describe the elements visible from a given location, and can also be applied to object type specific analysis, such as green view index estimation, with the main benefit being the freedom of choosing the point-of-view obtained with the 3D model. Several promising development directions can be identified based on the current implementation and experiment results, including the integration of the semantic view analysis with virtual reality immersive visualization or 3D city model application development platforms.


Author(s):  
C. Ellul ◽  
M. Adjrad ◽  
P. Groves

There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle – i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.


Author(s):  
S. Vitalis ◽  
K. Arroyo Ohori ◽  
J. Stoter

<p><strong>Abstract.</strong> 3D city models are being increasingly adopted by organisations in order to serve application needs related to urban areas. In order to fulfil the different requirements of various applications, the concept of Level of Detail (LoD) has been incorporated in 3D city models specifications, such as CityGML. Therefore, datasets of different LoDs are being created for the same areas by several organisations for their own use cases. Meanwhile, as time progresses newer versions of existing 3D city models are being created by vendors. Nevertheless, the existing mechanisms for representating multi-LoD data has not been adopted by the users and there has been little effort on the implementation of a mechanism to store multiple revisions of a city model. This results in redundancy of information and the existence of multiple datasets inconsistent with each other. Alternatively, a representation of time or scale as additional dimensions to the three spatial ones has been proposed as a better way to store multiple versions of datasets while retaining information related to the corresponding features between datasets. In this paper, we propose a conceptual framework with initial considerations for the implementation of a 4D representation of two states of a 3D city model. This framework defines both the data structure of such an approach, as well as the methodology according to which two existing 3D city models can be compared, associated and stored with their correspondences in 4D. The methodology is defined as six individual steps that have to be undertaken, each with its own individual requirements and goals that have to be challenged. We, also, provide some examples and considerations for the way those steps can be implemented.</p>


Sign in / Sign up

Export Citation Format

Share Document