A sensor deployment optimization model of the wireless sensor networks under retransmission

Author(s):  
Xiaoxi Liu ◽  
Ruiying Li ◽  
Ning Huang
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1368 ◽  
Author(s):  
Luoheng Yan ◽  
Yuyao He ◽  
Zhongmin Huangfu

The underwater wireless sensor networks (UWSNs) have been applied in lots of fields such as environment monitoring, military surveillance, data collection, etc. Deployment of sensor nodes in 3D UWSNs is a crucial issue, however, it is a challenging problem due to the complex underwater environment. This paper proposes a growth ring style uneven node depth-adjustment self-deployment optimization algorithm (GRSUNDSOA) to improve the coverage and reliability of UWSNs, meanwhile, and to solve the problem of energy holes. In detail, a growth ring style-based scheme is proposed for constructing the connective tree structure of sensor nodes and a global optimal depth-adjustment algorithm with the goal of comprehensive optimization of both maximizing coverage utilization and energy balance is proposed. Initially, the nodes are scattered to the water surface to form a connected network on this 2D plane. Then, starting from sink node, a growth ring style increment strategy is presented to organize the common nodes as tree structures and each root of subtree is determined. Meanwhile, with the goal of global maximizing coverage utilization and energy balance, all nodes depths are computed iteratively. Finally, all the nodes dive to the computed position once and a 3D underwater connected network with non-uniform distribution and balanced energy is constructed. A series of simulation experiments are performed. The simulation results show that the coverage and reliability of UWSN are improved greatly under the condition of full connectivity and energy balance, and the issue of energy hole can be avoided effectively. Therefore, GRSUNDSOA can prolong the lifetime of UWSN significantly.


Author(s):  
Shirin Khezri ◽  
Karim Faez ◽  
Amjad Osmani

Adequate coverage is one of the main problems for Sensor Networks. The effectiveness of distributed wireless sensor networks highly depends on the sensor deployment scheme. Optimizing the sensor deployment provides sufficient sensor coverage and saves cost of sensors for locating in grid points. This article applies the modified binary particle swarm optimization algorithm for solving the sensor placement in distributed sensor networks. PSO is an inherent continuous algorithm, and the discrete PSO is proposed to be adapted to discrete binary space. In the distributed sensor networks, the sensor placement is an NP-complete problem for arbitrary sensor fields. One of the most important issues in the research fields, the proposed algorithms will solve this problem by considering two factors: the complete coverage and the minimum costs. The proposed method on sensors surrounding is examined in different area. The results not only confirm the successes of using the new method in sensor placement, also they show that the new method is more efficiently compared to other methods like Simulated Annealing(SA), PBIL and LAEDA.


Sign in / Sign up

Export Citation Format

Share Document