distributed sensor networks
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 41)

H-INDEX

34
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Vamsi K. Amalladinne ◽  
Jamison R. Ebert ◽  
Jean-Francois Chamberland ◽  
Krishna R. Narayanan

Unsourced random access (URA) has emerged as a pragmatic framework for next-generation distributed sensor networks. Within URA, concatenated coding structures are often employed to ensure that the central base station can accurately recover the set of sent codewords during a given transmission period. Many URA algorithms employ independent inner and outer decoders, which can help reduce computational complexity at the expense of a decay in performance. In this article, an enhanced decoding algorithm is presented for a concatenated coding structure consisting of a wide range of inner codes and an outer tree-based code. It is shown that this algorithmic enhancement has the potential to simultaneously improve error performance and decrease the computational complexity of the decoder. This enhanced decoding algorithm is applied to two existing URA algorithms, and the performance benefits of the algorithm are characterized. Findings are supported by numerical simulations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259736
Author(s):  
Arindam Saha ◽  
James A. R. Marshall ◽  
Andreagiovanni Reina

Node counting on a graph is subject to some fundamental theoretical limitations, yet a solution to such problems is necessary in many applications of graph theory to real-world systems, such as collective robotics and distributed sensor networks. Thus several stochastic and naïve deterministic algorithms for distributed graph size estimation or calculation have been provided. Here we present a deterministic and distributed algorithm that allows every node of a connected graph to determine the graph size in finite time, if an upper bound on the graph size is provided. The algorithm consists in the iterative aggregation of information in local hubs which then broadcast it throughout the whole graph. The proposed node-counting algorithm is on average more efficient in terms of node memory and communication cost than its previous deterministic counterpart for node counting, and appears comparable or more efficient in terms of average-case time complexity. As well as node counting, the algorithm is more broadly applicable to problems such as summation over graphs, quorum sensing, and spontaneous hierarchy creation.


Author(s):  
Amir Makhmutov ◽  
Alexey Vulfin ◽  
Konstantin Mironov

Author(s):  
IA Houghton ◽  
PB Smit ◽  
D Clark ◽  
C Dunning ◽  
A Fisher ◽  
...  

AbstractA distributed sensor network of over one hundred free-drifting, real-time marine weather sensors was deployed in the Pacific Ocean beginning in early 2019. The Spotter buoys used in the network represent a next generation ocean weather sensor designed to measure surface waves, wind, currents, and sea surface temperature. Large distributed sensor networks like these provide much needed long-dwell sensing capabilities in open ocean regions. Despite the demand for better weather forecasts and climate data in our oceans, direct in situ measurements of marine surface weather (waves, winds, currents) remain exceedingly sparse in the open oceans. Due to the large expanse of our oceans, distributed paradigms are necessary to create sufficient data density at global scale, similar to advances in sensing on land and in space. Here we discuss initial findings from this long-dwell open ocean distributed sensor network. Through triple-collocation analysis, we determine errors in collocated satellite-derived observations and model estimates. The correlation analysis shows that the Spotter network provides wave height data with lower errors than both satellites and models. The wave spectrum was also further used to infer wind speed. Buoy drift dynamics are similar to established drogued drifters, particularly when accounting for windage. We find a windage correction factor for the Spotter buoy of approximately 1%, which is in agreement with theoretical estimates. Altogether, we present a completely new open ocean weather data set and characterize the data quality against other observations and models to demonstrate the broad value for ocean monitoring and forecasting that can be achieved using large-scale distributed sensor networks in our oceans.


Author(s):  
Alexander M. Gruebele ◽  
Andrew C. Zerbe ◽  
Margaret M. Coad ◽  
Allison M. Okamura ◽  
Mark R. Cutkosky

2021 ◽  
Author(s):  
Sili Wang ◽  
Steve Vance ◽  
Mark Panning ◽  
Sharon Kedar ◽  
Saikiran Tharimena ◽  
...  

2021 ◽  
Author(s):  
Andrea Abrardo ◽  
Mauro Barni ◽  
Kassem Kallas ◽  
Benedetta Tondi

Sign in / Sign up

Export Citation Format

Share Document